

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Welcome to BigARTM’s documentation!

[image: Fork me on GitHub]
  
    
    
    Introduction
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Introduction


Warning

Please note that this is a beta version of the BigARTM library
which is still undergoing final testing before its official release.
Should you encounter any bugs, lack of functionality or
other problems with our library, please let us know immediately.
Your help in this regard is greatly appreciated.



This is the documentation for the BigARTM library.
BigARTM is a tool to infer topic models [http://en.wikipedia.org/wiki/Topic_model],
based on a novel technique called
Additive Regularization of Topic Models [http://www.machinelearning.ru/wiki/images/1/1f/Voron14aist.pdf].
This technique effectively builds multi-objective models
by adding the weighted sums of regularizers to the optimization criterion.
BigARTM is known to combine well
very different objectives, including sparsing, smoothing, topics decorrelation and many others.
Such combinations of regularizers significantly improves
several quality measures at once almost without any loss of the perplexity.

Online.
BigARTM never stores the entire text collection
in the main memory. Instead the collection is split into
small chunks called ‘batches’, and BigARTM always loads a limited
number of batches into memory at any time.

Parallel.
BigARTM can concurrently process several batches,
and by doing so it substantially improves the throughput
on multi-core machines. The library hosts all computation
in several threads withing a single process,
which enables efficient usage of shared memory across application threads.

Extensible API.
BigARTM comes with an API in Python,
but can be easily extended for all other languages
that have an implementation of Google Protocol Buffers [https://code.google.com/p/protobuf/].

Cross-platform.
BigARTM is known to be compatible with gcc,
clang and the Microsoft
compiler (VS 2012). We have tested our library on Windows, Ubuntu
and Fedora.

Open source.
BigARTM is released under the New BSD License [http://opensource.org/licenses/BSD-3-Clause].
If you plan to use our library commercially, please beware that
BigARTM depends on ZeroMQ. Please, make sure to review
ZeroMQ license [http://zeromq.org/area:licensing].



Acknowledgements.
BigARTM project is supported by Russian Foundation for Basic Research (grants 14-07-00847, 14-07-00908, 14-07-31176),
Skolkovo Institute of Science and Technology (project 081-R), Moscow Institute of Physics and Technology.

[image: RFBR]
 [http://www.rfbr.ru/rffi/eng/about][image: Skoltech]
 [http://www.skoltech.ru/en][image: MIPT]
 [http://mipt.ru/en/]Partners

[image: antiplagian]
 [http://https://confluence.ap-team.ru/display/research/Antiplagiat+Research+Home/][image: bBridge]
 [http://bbridge.net/]



          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Downloads
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Downloads


	Windows


	Latest 32 bit release: BigARTM_v0.8.1_vs12_win32_RelWithDebInfo [https://github.com/bigartm/bigartm/releases/download/v0.8.1/BigARTM_v0.8.1_vs12_win32_RelWithDebInfo.7z]

	Latest 64 bit release: BigARTM_v0.8.1_vs12_win64_RelWithDebInfo [https://github.com/bigartm/bigartm/releases/download/v0.8.1/BigARTM_v0.8.1_vs12_win64_RelWithDebInfo.7z]

	All previous releases are available at https://github.com/bigartm/bigartm/releases



Please refer to Basic BigARTM tutorial for Windows users for step by step installation procedure.



	Linux, Mac OS-X

To run BigARTM on Linux and Mac OS-X you need to clone BigARTM repository
(https://github.com/bigartm/bigartm) and build it as described in
Basic BigARTM tutorial for Linux and Mac OS-X users.



	Datasets

Download one of the following datasets to start experimenting with BigARTM.
See Formats page for the description of input data formats.











	Task
	Source
	#Words
	#Items
	Files




	kos
	UCI [https://archive.ics.uci.edu/ml/datasets/Bag+of+Words]
	6906
	3430
	
	docword.kos.txt.gz (1 MB) [https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz]

	vocab.kos.txt (54 KB) [https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt]

	kos_1k (700 KB) [https://s3-eu-west-1.amazonaws.com/artm/kos_1k.7z]






	nips
	UCI [https://archive.ics.uci.edu/ml/datasets/Bag+of+Words]
	12419
	1500
	
	docword.nips.txt.gz (2.1 MB) [https://s3-eu-west-1.amazonaws.com/artm/docword.nips.txt.gz]

	vocab.nips.txt (98 KB) [https://s3-eu-west-1.amazonaws.com/artm/vocab.nips.txt]

	nips_200 (1.5 MB) [https://s3-eu-west-1.amazonaws.com/artm/nips_200.7z]






	enron
	UCI [https://archive.ics.uci.edu/ml/datasets/Bag+of+Words]
	28102
	39861
	
	docword.enron.txt.gz (11.7 MB) [https://s3-eu-west-1.amazonaws.com/artm/docword.enron.txt.gz]

	vocab.enron.txt (230 KB) [https://s3-eu-west-1.amazonaws.com/artm/vocab.enron.txt]

	enron_1k (7.1 MB) [https://s3-eu-west-1.amazonaws.com/artm/enron_1k.7z]






	nytimes
	UCI [https://archive.ics.uci.edu/ml/datasets/Bag+of+Words]
	102660
	300000
	
	docword.nytimes.txt.gz (223 MB) [https://s3-eu-west-1.amazonaws.com/artm/docword.nytimes.txt.gz]

	vocab.nytimes.txt (1.2 MB) [https://s3-eu-west-1.amazonaws.com/artm/vocab.nytimes.txt]

	nytimes_1k (131 MB) [https://s3-eu-west-1.amazonaws.com/artm/nytimes_1k.7z]






	pubmed
	UCI [https://archive.ics.uci.edu/ml/datasets/Bag+of+Words]
	141043
	8200000
	
	docword.pubmed.txt.gz (1.7 GB) [https://s3-eu-west-1.amazonaws.com/artm/docword.pubmed.txt.gz]

	vocab.pubmed.txt (1.3 MB) [https://s3-eu-west-1.amazonaws.com/artm/vocab.pubmed.txt]

	pubmed_10k (1 GB) [https://s3-eu-west-1.amazonaws.com/artm/pubmed_10k.7z]






	wiki
	Gensim [http://radimrehurek.com/gensim/wiki.html]
	100000
	3665223
	
	enwiki-20141208_10k (1.2 GB) [https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z]

	enwiki-20141208_1k (1.4 GB) [https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z]






	wiki_enru
	Wiki [http://dumps.wikimedia.org]
	196749
	216175
	
	wiki_enru (282 MB) [https://s3-eu-west-1.amazonaws.com/artm/wiki_enru.7z]

	namespaces: @english, @russian






	lastfm
	lastfm [http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/]
	
	1k,
360k
	
	lastfm_1k ( MB) [https://s3-eu-west-1.amazonaws.com/artm/lastfm_1k.7z] (VW format)

	lastfm_360k ( MB) [https://s3-eu-west-1.amazonaws.com/artm/lastfm_360k.7z] (VW format)






	mmro
	mmro [http://mmro.ru/]
	7805
	1061
	
	docword.mmro.txt.gz (500 KB) [https://s3-eu-west-1.amazonaws.com/artm/docword.mmro.txt.7z]

	vocab.mmro.txt (150 KB) [https://s3-eu-west-1.amazonaws.com/artm/vocab.mmro.txt]

	pPMI_w100.mmro.txt.7z (23 MB) [https://s3-eu-west-1.amazonaws.com/artm/pPMI_w100.mmro.txt.7z]

	vw.mmro.txt.7z (1.4 MB) [https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt.7z]






	eurlex
	eurlex [http://www.ke.tu-darmstadt.de/resources/eurlex]
	19800
	21000
	
	eurlex_1k (13 MB) [https://s3-eu-west-1.amazonaws.com/artm/eurlex_1k.zip]




















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Formats
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Formats

This page describes input data formats compatible with BigARTM.
Currently all formats correspond to Bag-of-words representation [https://en.wikipedia.org/wiki/Bag-of-words_model],
meaning that all linguistic processing (lemmatization, tokenization, detection of n-grams, etc) needs to be done outside BigARTM.


	Vowpal Wabbit [https://github.com/JohnLangford/vowpal_wabbit/wiki/Input-format] is a single-format file, based on the following principles:


	each document is depresented in a single line

	all tokens are represented as strings (no need to convert them into an integer identifier)

	token frequency defaults to 1.0, and can be optionally specified after a colon (:)

	namespaces (Batch.class_id) can be identified by a pipe (|)



Example 1

doc1 Alpha Bravo:10 Charlie:5 |author Ola_Nordmann
doc2 Bravo:5 Delta Echo:3 |author Ivan_Ivanov





Example 2

user123 |track-like track2 track5 track7 |track-play track1:10 track2:25 track3:2 track7:8 |track-skip track2:3 track8:1 |artist-like artist4:2 artist5:6 |artist-play artist4:100 artist5:20
user345 |track-like track2 track5 track7 |track-play track1:10 track2:25 track3:2 track7:8 |track-skip track2:3 track8:1 |artist-like artist4:2 artist5:6 |artist-play artist4:100 artist5:20







	UCI Bag-of-words [https://archive.ics.uci.edu/ml/datasets/Bag+of+Words]
format consists of two files - vocab.*.txt and docword.*.txt.
The format of the docword.*.txt file is 3 header lines, followed by NNZ triples:

D
W
NNZ
docID wordID count
docID wordID count
...
docID wordID count





The file must be sorted on docID.
Values of wordID must be unity-based (not zero-based).
The format of the vocab.*.txt file is line containing wordID=n.
Note that words must not have spaces or tabs.
In vocab.*.txt file it is also possible to specify
the namespace (Batch.class_id) for tokens, as it is shown in this example:

token1 @default_class
token2 custom_class
token3 @default_class
token4





Use space or tab to separate token from its class.
Token that are not followed by class label automatically
get ''@default_class‘’ as a label (see ‘’token4’’ in the example).

Unicode support. For non-ASCII characters save vocab.*.txt file in UTF-8 format.



	Batches (binary BigARTM-specific format).

This is compact and efficient format, based on several protobuf messages in public BigARTM interface (Batch, Item and Field).


	A batch is a collection of several items

	An item is a collection of several fields

	A field is a collection of pairs (token_id, token_weight).



The following example shows a Python code that generates a synthetic batch.

import artm.messages, random, uuid

num_tokens = 60
num_items = 100
batch = artm.messages.Batch()
batch.id = str(uuid.uuid4())
for token_id in range(0, num_tokens):
    batch.token.append('token' + str(token_id))

for item_id in range(0, num_items):
    item = batch.item.add()
    item.id = item_id
    field = item.field.add()
    for token_id in range(0, num_tokens):
        field.token_id.append(token_id)
        background_count = random.randint(1, 5) if (token_id >= 40) else 0
        topical_count = 10 if (token_id < 40) and ((token_id % 10) == (item_id % 10)) else 0
        field.token_weight.append(background_count + topical_count)





Note that the batch has its local dictionary, batch.token.
This dictionary which maps token_id into the actual token.
In order to create a batch from textual files involve one needs to find all distinct words,
and map them into sequential indices.

batch.id must be set to a unique GUID in a format of 00000000-0000-0000-0000-000000000000.









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Installation
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Installation



	Installation for Windows users
	Download

	Configure BigARTM Python API





	Installation for Linux and Mac OS-X users
	System dependencies

	Download sources and build

	System-wide installation

	Configure BigARTM Python API

	Troubleshooting

	BigARTM on Travis-CI













          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Installation for Windows users
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Installation 
 
      

    


    
      
          
            
  
Installation for Windows users


Download

Download latest binary distribution of BigARTM from https://github.com/bigartm/bigartm/releases.
Explicit download links can be found at Downloads section (for 32 bit and 64 bit configurations).

The distribution will contain pre-build binaries, command-line interface and BigARTM API for Python.
The distribution also contains a simple dataset.
More datasets in BigARTM-compatible format are available in the Downloads section.

Refer to Windows distribution for details about other files, included in the binary distribution package.




Configure BigARTM Python API


	Install Python, for example from the following links:


	Python 2.7.11, 64 bit –  https://www.python.org/ftp/python/2.7.11/python-2.7.11.amd64.msi, or

	Python 2.7.11, 32 bit – https://www.python.org/ftp/python/2.7.11/python-2.7.11.msi



Remember that the version of BigARTM package must match your version Python installed on your machine.
If you have 32 bit operating system then you must select 32 bit for Python and BigARTM package.
If you have 64 bit operating system then you are free to select either version.
However, please note that memory usage of 32 bit processes is limited by 2 GB.
For this reason we recommend to select 64 bit configurations.

Please note that you must use Python 2.7, because Python 3 is not
supported by BigARTM.

Also you need to have several Python libraries to be installed on your machine:


	numpy >= 1.9.2

	pandas >= 0.16.2





	Add C:\BigARTM\bin folder to your PATH system variable, and
add C:\BigARTM\python to your PYTHONPATH system variable:

set PATH=%PATH%;C:\BigARTM\bin
set PATH=%PATH%;C:\Python27;C:\Python27\Scripts
set PYTHONPATH=%PYTHONPATH%;C:\BigARTM\Python





Remember to change C:\BigARTM and C:\Python27 with your local folders.



	Setup Google Protocol Buffers library, included in the BigARTM release package.


	Copy C:\BigARTM\bin\protoc.exe file into C:\BigARTM\protobuf\src folder

	Run the following commands from command prompt



cd C:\BigARTM\protobuf\Python
python setup.py build
python setup.py install





Avoid python setup.py test step, as it produces several confusing errors. Those errors are harmless.
For further details about protobuf installation refer to protobuf/python/README [https://raw.githubusercontent.com/bigartm/bigartm/master/3rdparty/protobuf/python/README.txt].











          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Installation for Linux and Mac OS-X users
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Installation 
 
      

    


    
      
          
            
  
Installation for Linux and Mac OS-X users

Currently there is no distribution package of BigARTM for Linux.
BigARTM had been tested on several Linux OS, and it is known to work well,
but you have to get the source code and compile it locally on your machine.


System dependencies

Building BigARTM requires the following components:



	git [https://git-scm.org] (any recent version) – for obtaining source code;

	cmake [https://cmake.org] (at least of version 2.8), make,
g++ or clang compiler with c++11 support,
boost (at least of version 1.40) –
for building library and binary executable;

	python [https://python.org] (version 2.7) –
for building Python API for BigARTM.






To simplify things, you may type:


	On deb-based distributions:
sudo apt-get install git make cmake build-essential libboost-all-dev

	On rpm-based distributions:
sudo yum install git make cmake gcc-c++ glibc-static libstdc++-static boost boost-static python
(for Fedora 22 or higher use dnf instead of yum)

	On Mac OS distributions:
sudo brew install git cmake boost






Download sources and build

Clone the latest BigARTM code from our github repository,
and build it via CMake as in the following script.

cd ~
git clone --branch=stable https://github.com/bigartm/bigartm.git
cd bigartm
mkdir build && cd build
cmake ..
make





Note for Linux users: By default building
binary executable bigartm requiers static versions of Boost, C and C++ libraries.
To alter it, run cmake command with option -DBUILD_STATIC_BIGARTM=OFF.




System-wide installation

To install command-line utility, shared library module and Python interface for BigARTM,
you can type:

sudo make install





Normally this will install:


	bigartm utility into folder /usr/local/bin/;

	shared library libartm.so (artm.dylib for Max OS-X)
into folder /usr/local/lib/;

	Python interface for BigARTM into Python-specific system directories, along
with necessary dependencies.



If you want to alter target folders for binary and shared library objects,
you may specify common prefix while running cmake command
via option -DCMAKE_INSTALL_PREFIX=path_to_folder.
By default CMAKE_INSTALL_PREFIX=/usr/local/.




Configure BigARTM Python API

If you want to use only Python interface for BigARTM, you may run following commands:

# Step 1 - install Google Protobuf as dependency
cd ~/bigartm/3rdparty/protobuf/python
sudo python setup.py install

# Step 2 - install Python interface for BigARTM
cd ~/bigartm/python
sudo python setup.py install

# Step 3 - point ARTM_SHARED_LIBRARY variable to libartm.so (libartm.dylib) location
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.so        # for linux
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.dylib     # for Mac OS X





We strongly recommend system-wide installation as
there is no need to keep BigARTM code after it, so you may safely
remove folder ~bigartm/.




Troubleshooting

If you build BigARTM in existing folder build (e.g. you built BigARTM before) and encounter any errors,
it may be due to out-of-date file CMakeCache.txt in folder build. In that case we strongly recommend
to delete this file and try to build again.



While building BigARTM you can see lines similar to the following:

Building python package protobuf 2.5.1-pre
  File "/home/ubuntu/bigartm/3rdparty/protobuf/python/setup.py", line 52
    print "Generating %s..." % output
                             ^
SyntaxError: Missing parentheses in call to 'print'





This error may happen during google protobuf installation.
It indicates that you are using Python 3, which is not supported by BigARTM.
(see this [http://stackoverflow.com/questions/826948/syntax-error-on-print-with-python-3]
question on StackOverflow for more details on the error around print).
Please use Python 2.7 (e.g Python 2.7.11) to workaround this issue.



Using BigARTM Python API you can encounter this error:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "build/bdist.linux-x86_64/egg/artm/wrapper/api.py", line 19, in __init__
File "build/bdist.linux-x86_64/egg/artm/wrapper/api.py", line 53, in _load_cdll
OSError: libartm.so: cannot open shared object file: No such file or directory
Failed to load artm shared library. Try to add the location of `libartm.so` file into your LD_LIBRARY_PATH system variable, or to set ARTM_SHARED_LIBRARY - a specific system variable which may point to `libartm.so` file, including the full path.





This error indicates that BigARTM’s python interface can not locate libartm.so (libartm.dylib) files.
In such case type export ARTM_SHARED_LIBRARY=path_to_artm_shared_library.




BigARTM on Travis-CI

To get a live usage example of BigARTM you may check BigARTM’s
.travis.yml [https://raw.githubusercontent.com/bigartm/bigartm/master/.travis.yml]
script and the latest continuous integration build [https://travis-ci.org/bigartm/bigartm].







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Tutorial references
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Tutorial references



	BigARTM command line utility

	Running BigARTM from Python API









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM command line utility
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Tutorial references 
 
      

    


    
      
          
            
  
BigARTM command line utility

This document provides an overview of bigartm
command-line utility shipped with BigARTM.

For a detailed description of bigartm command line interface refer to
bigartm.exe notebook [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/junk/cli/BigARTM_CommandLineInferface.ipynb] (in Russian).

In brief, you need to download some input data (a textual collection represented in bag-of-words format).
We recommend to download vocab and docword files by links provided in Downloads section of the tutorial.
Then you can use bigartm as described by bigartm --help:

BigARTM - library for advanced topic modeling (http://bigartm.org):

Input data:
  -c [ --read-vw-corpus ] arg         Raw corpus in Vowpal Wabbit format
  -d [ --read-uci-docword ] arg       docword file in UCI format
  -v [ --read-uci-vocab ] arg         vocab file in UCI format
  --read-cooc arg                     read co-occurrences format
  --batch-size arg (=500)             number of items per batch
  --use-batches arg                   folder with batches to use

Dictionary:
  --dictionary-min-df arg             filter out tokens present in less than N
                                      documents / less than P% of documents
  --dictionary-max-df arg             filter out tokens present in less than N
                                      documents / less than P% of documents
  --use-dictionary arg                filename of binary dictionary file to use

Model:
  --load-model arg                    load model from file before processing
  -t [ --topics ] arg (=16)           number of topics
  --use-modality arg                  modalities (class_ids) and their weights
  --predict-class arg                 target modality to predict by theta
                                      matrix

Learning:
  -p [ --passes ] arg (=0)            number of outer iterations
  --inner-iterations-count arg (=10)  number of inner iterations
  --update-every arg (=0)             [online algorithm] requests an update of
                                      the model after update_every document
  --tau0 arg (=1024)                  [online algorithm] weight option from
                                      online update formula
  --kappa arg (=0.699999988)          [online algorithm] exponent option from
                                      online update formula
  --reuse-theta                       reuse theta between iterations
  --regularizer arg                   regularizers (SmoothPhi,SparsePhi,SmoothT
                                      heta,SparseTheta,Decorrelation)
  --threads arg (=0)                  number of concurrent processors (default:
                                      auto-detect)
  --async                             invoke asynchronous version of the online
                                      algorithm
  --model-v06                         use legacy model from BigARTM v0.6.4

Output:
  --save-model arg                    save the model to binary file after
                                      processing
  --save-batches arg                  batch folder
  --save-dictionary arg               filename of dictionary file
  --write-model-readable arg          output the model in a human-readable
                                      format
  --write-dictionary-readable arg     output the dictionary in a human-readable
                                      format
  --write-predictions arg             write prediction in a human-readable
                                      format
  --write-class-predictions arg       write class prediction in a
                                      human-readable format
  --write-scores arg                  write scores in a human-readable format
  --force                             force overwrite existing output files
  --csv-separator arg (=;)            columns separator for
                                      --write-model-readable and
                                      --write-predictions. Use \t or TAB to
                                      indicate tab.
  --score-level arg (=2)              score level (0, 1, 2, or 3
  --score arg                         scores (Perplexity, SparsityTheta,
                                      SparsityPhi, TopTokens, ThetaSnippet, or
                                      TopicKernel)
  --final-score arg                   final scores (same as scores)

Other options:
  -h [ --help ]                       display this help message
  --response-file arg                 response file
  --paused                            start paused and waits for a keystroke
                                      (allows to attach a debugger)
  --disk-cache-folder arg             disk cache folder
  --disable-avx-opt                   disable AVX optimization (gives similar
                                      behavior of the Processor component to
                                      BigARTM v0.5.4)
  --use-dense-bow                     use dense representation of bag-of-words
                                      data in processors
  --time-limit arg (=0)               limit execution time in milliseconds

Examples:

* Download input data:
  wget https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt
  wget https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
  wget https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt

* Parse docword and vocab files from UCI bag-of-word format; then fit topic model with 20 topics:
  bigartm -d docword.kos.txt -v vocab.kos.txt -t 20 --passes 10

* Parse VW format; then save the resulting batches and dictionary:
  bigartm --read-vw-corpus vw.mmro.txt --save-batches mmro_batches --save-dictionary mmro.dict

* Parse VW format from standard input; note usage of single dash '-' after --read-vw-corpus:
  cat vw.mmro.txt | bigartm --read-vw-corpus - --save-batches mmro2_batches --save-dictionary mmro2.dict

* Load and filter the dictionary on document frequency; save the result into a new file:
  bigartm --use-dictionary mmro.dict --dictionary-min-df 5 dictionary-max-df 40% --save-dictionary mmro-filter.dict

* Load the dictionary and export it in a human-readable format:
  bigartm --use-dictionary mmro.dict --write-dictionary-readable mmro.dict.txt

* Use batches to fit a model with 20 topics; then save the model in a binary format:
  bigartm --use-batches mmro_batches --passes 10 -t 20 --save-model mmro.model

* Load the model and export it in a human-readable format:
  bigartm --load-model mmro.model --write-model-readable mmro.model.txt

* Load the model and use it to generate predictions:
  bigartm --read-vw-corpus vw.mmro.txt --load-model mmro.model --write-predictions mmro.predict.txt

* Fit model with two modalities (@default_class and @target), and use it to predict @target label:
  bigartm --use-batches <batches> --use-modality @default_class,@target --topics 50 --passes 10 --save-model model.bin
  bigartm --use-batches <batches> --use-modality @default_class,@target --topics 50 --load-model model.bin
          --write-predictions pred.txt --csv-separator=tab
          --predict-class @target --write-class-predictions pred_class.txt --score ClassPrecision

* Fit simple regularized model (increase sparsity up to 60-70%):
  bigartm -d docword.kos.txt -v vocab.kos.txt --dictionary-max-df 50% --dictionary-min-df 2
          --passes 10 --batch-size 50 --topics 20 --write-model-readable model.txt
          --regularizer "0.05 SparsePhi" "0.05 SparseTheta"

* Fit more advanced regularize model, with 10 sparse objective topics, and 2 smooth background topics:
  bigartm -d docword.kos.txt -v vocab.kos.txt --dictionary-max-df 50% --dictionary-min-df 2
          --passes 10 --batch-size 50 --topics obj:10;background:2 --write-model-readable model.txt
          --regularizer "0.05 SparsePhi #obj"
          --regularizer "0.05 SparseTheta #obj"
          --regularizer "0.25 SmoothPhi #background"
          --regularizer "0.25 SmoothTheta #background"

* Configure logger to output into stderr:
  tset GLOG_logtostderr=1 & bigartm -d docword.kos.txt -v vocab.kos.txt -t 20 --passes 10









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Running BigARTM from Python API
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Tutorial references 
 
      

    


    
      
          
            
  
Running BigARTM from Python API

Refer to ARTM tutorial
(in Russian [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_tutorial_RU.ipynb]
or in English [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_tutorial_EN.ipynb]),
which describes artm.ARTM model from high-level Python API of BigARTM.

Refer to LDA tutorial
(in Russian [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/LDA_tutorial_RU.ipynb]
or in English [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/LDA_tutorial_EN.ipynb]),
which describes artm.LDA model from high-level Python API of BigARTM.

Refer to ARTM notebook with model experiment
(in Russian [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_example_RU.ipynb]
or in English [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_example_EN.ipynb]),
which shows an example of usage of artm.ARTM model from high-level Python API of BigARTM.

If some of these link are not available, try to open the repository manually: https://github.com/bigartm/bigartm-book





          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Python Interface
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Python Interface

This document describes all classes and functions
in python interface of BigARTM library.



	ARTM model

	LDA model

	Batches Utils

	Dictionary

	Regularizers

	Scores

	Score Tracker

	Master Component









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    ARTM model
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
ARTM model

This page describes ARTM class.


	
class artm.ARTM(num_topics=None, topic_names=None, num_processors=None, class_ids=None, scores=None, regularizers=None, num_document_passes=10, reuse_theta=False, dictionary=None, cache_theta=False, theta_columns_naming='id', seed=-1)

	
	
__init__(num_topics=None, topic_names=None, num_processors=None, class_ids=None, scores=None, regularizers=None, num_document_passes=10, reuse_theta=False, dictionary=None, cache_theta=False, theta_columns_naming='id', seed=-1)

	



	Parameters:	
	num_topics (int) – the number of topics in model, will be overwrited if                                 topic_names is set

	num_processors (int) – how many threads will be used for model training, if                                 not specified then number of threads will be detected by the lib

	topic_names (list of str) – names of topics in model

	class_ids (dict) – list of class_ids and their weights to be used in model,                                 key — class_id, value — weight, if not specified then                                 all class_ids will be used

	cache_theta (bool) – save or not the Theta matrix in model. Necessary if                                 ARTM.get_theta() usage expects

	scores (list) – list of scores (objects of artm.*Score classes)

	regularizers (list) – list with regularizers (objects of artm.*Regularizer classes)

	num_document_passes (int) – number of inner iterations over each document

	dictionary (str or reference to Dictionary object) – dictionary to be used for initialization, if None nothing will be done

	reuse_theta (bool) – reuse Theta from previous iteration or not

	theta_columns_naming (str) – either ‘id’ or ‘title’, determines how to name columns                                 (documents) in theta dataframe

	seed (unsigned int or -1) – seed for random initialization, -1 means no seed






	Important public fields:

		
	regularizers: contains dict of regularizers, included into model

	scores: contains dict of scores, included into model

	score_tracker: contains dict of scoring results:               key — score name, value — ScoreTracker object, which contains info about               values of score on each synchronization (e.g. collection pass) in list






	Note:	
	Here and anywhere in BigARTM empty topic_names or class_ids means that            model (or regularizer, or score) should use all topics or class_ids.

	If some fields of regularizers or scores are not defined by            user — internal lib defaults would be used.

	If field ‘topic_names’ is None, it will be generated by BigARTM and will            be available using ARTM.topic_names().














	
dispose()

	



	Description:	free all native memory, allocated for this model




	Note:	
	This method does not free memory occupied by dictionaries,
because dictionaries are shared across all models

	ARTM class implements __exit__ and __del___ methods,
which automatically call dispose.














	
fit_offline(batch_vectorizer=None, num_collection_passes=1)

	



	Description:	proceeds the learning of topic model in offline mode




	Parameters:	
	batch_vectorizer (object_referenece) – an instance of BatchVectorizer class

	num_collection_passes (int) – number of iterations over whole given collection














	
fit_online(batch_vectorizer=None, tau0=1024.0, kappa=0.7, update_every=1, apply_weight=None, decay_weight=None, update_after=None, async=False)

	



	Description:	proceeds the learning of topic model in online mode




	Parameters:	
	batch_vectorizer (object_reference) – an instance of BatchVectorizer class

	update_every (int) – the number of batches; model will be updated once per it

	tau0 (float) – coefficient (see ‘Update formulas’ paragraph)

	kappa (float) (float) – power for tau0, (see ‘Update formulas’ paragraph)

	update_after (list of int) – number of batches to be passed for Phi synchronizations

	apply_weight (list of float) – weight of applying new counters

	decay_weight (list of float) – weight of applying old counters

	async (bool) – use or not the async implementation of the EM-algorithm






	Note:	async=True leads to impossibility of score extraction via score_tracker.          Use get_score() instead.




	Update formulas:

		
	The formulas for decay_weight and apply_weight:

	update_count = current_processed_docs / (batch_size * update_every);

	rho = pow(tau0 + update_count, -kappa);

	decay_weight = 1-rho;

	apply_weight = rho;

	if apply_weight, decay_weight and update_after are set, they will be used,            otherwise the code below will be used (with update_every, tau0 and kappa)














	
get_phi(topic_names=None, class_ids=None, model_name=None)

	



	Description:	get custom Phi matrix of model. The extraction of the                      whole Phi matrix expects ARTM.phi_ call.




	Parameters:	
	topic_names (list of str) – list with topics to extract, None value means all topics

	class_ids (list of str) – list with class ids to extract, None means all class ids

	model_name (str) – self.model_pwt by default, self.model_nwt is also                      reasonable to extract unnormalized counters






	Returns:	
	pandas.DataFrame: (data, columns, rows), where:

	columns — the names of topics in topic model;

	rows — the tokens of topic model;

	data — content of Phi matrix.
















	
get_score(score_name)

	



	Description:	get score after fit_offline, fit_online or transform


	Parameters:	score_name (str) – the name of the score to return










	
get_theta(topic_names=None)

	



	Description:	get Theta matrix for training set of documents


	Parameters:	topic_names (list of str) – list with topics to extract, None means all topics


	Returns:	
	pandas.DataFrame: (data, columns, rows), where:

	columns — the ids of documents, for which the Theta matrix was requested;

	rows — the names of topics in topic model, that was used to create Theta;

	data — content of Theta matrix.














	
info

	



	Description:	returns internal diagnostics information about the model










	
initialize(dictionary=None)

	



	Description:	initialize topic model before learning


	Parameters:	dictionary (str or reference to Dictionary object) – loaded BigARTM collection dictionary










	
library_version

	



	Description:	the version of BigARTM library in a MAJOR.MINOR.PATCH format










	
load(filename, model_name='p_wt')

	



	Description:	loads from disk the topic model saved by ARTM.save()




	Parameters:	
	filename (str) – the name of file containing model

	model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’






	Note:	
	Loaded model will overwrite ARTM.topic_names and class_ids fields.

	All class_ids weights will be set to 1.0, you need to specify them by            hand if it’s necessary.

	The method call will empty ARTM.score_tracker.

	All regularizers and scores will be forgotten.

	etc.

	We strongly recommend you to reset all important parameters of the ARTM            model, used earlier.














	
remove_theta()

	



	Description:	removes cached theta matrix










	
save(filename, model_name='p_wt')

	



	Description:	saves one Phi-like matrix to disk




	Parameters:	
	filename (str) – the name of file to store model

	model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’














	
transform(batch_vectorizer=None, theta_matrix_type='dense_theta', predict_class_id=None)

	



	Description:	find Theta matrix for new documents




	Parameters:	
	batch_vectorizer (object_reference) – an instance of BatchVectorizer class

	theta_matrix_type (str) – type of matrix to be returned, possible values:
‘dense_theta’, ‘dense_ptdw’, None, default=’dense_theta’

	predict_class_id (str) – class_id of a target modality to predict.                When this option is enabled the resulting columns of theta matrix will                correspond to unique labels of a target modality. The values will represent                p(c|d), which give the probability of class label c for document d.






	Returns:	
	pandas.DataFrame: (data, columns, rows), where:

	columns — the ids of documents, for which the Theta matrix was requested;

	rows — the names of topics in topic model, that was used to create Theta;

	data — content of Theta matrix.








	Note:	
	‘dense_ptdw’ mode provides simple access to values of p(t|w,d).
The resulting pandas.DataFrame object will contain a flat theta matrix (no 3D) where
each item has multiple columns - as many as the number of tokens in that document.
These columns will have the same item_id.
The order of columns with equal item_id is the same
as the order of tokens in the input data (batch.item.token_id).





















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    LDA model
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
LDA model

This page describes LDA class.


	
class artm.LDA(num_topics=None, num_processors=None, cache_theta=False, dictionary=None, num_document_passes=10, seed=-1, alpha=0.01, beta=0.01, theta_columns_naming='id')

	
	
__init__(num_topics=None, num_processors=None, cache_theta=False, dictionary=None, num_document_passes=10, seed=-1, alpha=0.01, beta=0.01, theta_columns_naming='id')

	



	Parameters:	
	num_topics (int) – the number of topics in model, will be overwrited if                                 topic_names is set

	num_processors (int) – how many threads will be used for model training, if                                 not specified then number of threads will be detected by the lib

	cache_theta (bool) – save or not the Theta matrix in model. Necessary if                                 ARTM.get_theta() usage expects

	num_document_passes (int) – number of inner iterations over each document

	dictionary (str or reference to Dictionary object) – dictionary to be used for initialization, if None nothing will be done

	reuse_theta (bool) – reuse Theta from previous iteration or not

	seed (unsigned int or -1) – seed for random initialization, -1 means no seed

	alpha (float) – hyperparameter of Theta smoothing regularizer

	beta (float or list of floats with len == num_topics) – hyperparameter of Phi smoothing regularizer

	theta_columns_naming (str) – either ‘id’ or ‘title’, determines how to name columns                                 (documents) in theta dataframe






	Note:	
	the type (not value!) of beta should not change after initialization: if it was scalar - it            should stay scalar, if it was list - it should stay list.














	
fit_offline(batch_vectorizer, num_collection_passes=1)

	



	Description:	proceeds the learning of topic model in offline mode




	Parameters:	
	batch_vectorizer (object_referenece) – an instance of BatchVectorizer class

	num_collection_passes (int) – number of iterations over whole given collection














	
fit_online(batch_vectorizer, tau0=1024.0, kappa=0.7, update_every=1)

	



	Description:	proceeds the learning of topic model in online mode




	Parameters:	
	batch_vectorizer (object_reference) – an instance of BatchVectorizer class

	update_every (int) – the number of batches; model will be updated once per it

	tau0 (float) – coefficient (see ‘Update formulas’ paragraph)

	kappa (float) (float) – power for tau0, (see ‘Update formulas’ paragraph)

	update_after (list of int) – number of batches to be passed for Phi synchronizations






	Update formulas:

		
	The formulas for decay_weight and apply_weight:

	update_count = current_processed_docs / (batch_size * update_every);

	rho = pow(tau0 + update_count, -kappa);

	decay_weight = 1-rho;

	apply_weight = rho;














	
get_theta()

	



	Description:	get Theta matrix for training set of documents


	Returns:	
	pandas.DataFrame: (data, columns, rows), where:

	columns — the ids of documents, for which the Theta matrix was requested;

	rows — the names of topics in topic model, that was used to create Theta;

	data — content of Theta matrix.














	
get_top_tokens(num_tokens=10, with_weights=False)

	



	Description:	returns most probable tokens for each topic




	Parameters:	
	num_tokens (int) – number of top tokens to be returned

	with_weights (bool) – return only tokens, or tuples (token, its p_wt)






	Returns:	
	list of lists of str, each internal list corresponds one topic in            natural order, if with_weights == False, or list, or list of lists            of tules, each tuple is (str, float)
















	
initialize(dictionary)

	



	Description:	initialize topic model before learning


	Parameters:	dictionary (str or reference to Dictionary object) – loaded BigARTM collection dictionary










	
load(filename, model_name='p_wt')

	



	Description:	loads from disk the topic model saved by LDA.save()




	Parameters:	
	filename (str) – the name of file containing model

	model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’






	Note:	
	We strongly recommend you to reset all important parameters of the LDA            model, used earlier.














	
remove_theta()

	



	Description:	removes cached theta matrix










	
save(filename, model_name='p_wt')

	



	Description:	saves one Phi-like matrix to disk




	Parameters:	
	filename (str) – the name of file to store model

	model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’














	
transform(batch_vectorizer, theta_matrix_type='dense_theta')

	



	Description:	find Theta matrix for new documents




	Parameters:	
	batch_vectorizer (object_reference) – an instance of BatchVectorizer class

	theta_matrix_type (str) – type of matrix to be returned, possible values:
‘dense_theta’, None, default=’dense_theta’






	Returns:	
	pandas.DataFrame: (data, columns, rows), where:

	columns — the ids of documents, for which the Theta matrix was requested;

	rows — the names of topics in topic model, that was used to create Theta;

	data — content of Theta matrix.























          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Batches Utils
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
Batches Utils

This page describes BatchVectorizer class.


	
class artm.BatchVectorizer(batches=None, collection_name=None, data_path='', data_format='batches', target_folder=None, batch_size=1000, batch_name_type='code', data_weight=1.0, n_wd=None, vocabulary=None, gather_dictionary=True)

	
	
__init__(batches=None, collection_name=None, data_path='', data_format='batches', target_folder=None, batch_size=1000, batch_name_type='code', data_weight=1.0, n_wd=None, vocabulary=None, gather_dictionary=True)

	



	Parameters:	
	collection_name (str) – the name of text collection (required if data_format == ‘bow_uci’)

	data_path (str) – 
	if data_format == ‘bow_uci’ => folder containing                                 ‘docword.collection_name.txt’ and vocab.collection_name.txt files;                              2) if data_format == ‘vowpal_wabbit’ => file in Vowpal Wabbit format;                              3) if data_format == ‘bow_n_wd’ => useless parameter                              4) if data_format == ‘batches’ => folder containing batches





	data_format (str) – the type of input data:                              1) ‘bow_uci’ — Bag-Of-Words in UCI format;                              2) ‘vowpal_wabbit’ — Vowpal Wabbit format;                              3  ‘bow_n_wd’ — result of CountVectorizer or similar tool;                              4) ‘batches’ — the BigARTM data format

	batch_size (int) – number of documents to be stored in each batch

	target_folder (str) – full path to folder for future batches storing;                                  if not set, no batches will be produced for further work

	batches (list of str) – list with non-full file names of batches (necessary parameters are                              batches + data_path + data_fromat==’batches’ in this case)

	batch_name_type (str) – name batches in natural order (‘code’) or using random guids (guid)

	data_weight (float) – weight for a group of batches from data_path;                              it can be a list of floats, then data_path (and                              target_folder if not data_format == ‘batches’)                              should also be lists; one weight corresponds to                              one path from the data_path list;

	n_wd (array) – numpy.array with n_wd counters

	vocabulary (dict) – dict with vocabulary, key - index of n_wd, value - token

	gather_dictionary (bool) – create or not the default dictionary in vectorizer;                                       if data_format == ‘bow_n_wd’ - automatically set to True;                                       and if data_weight is list - automatically set to False














	
batch_size

	



	Returns:	the user-defined size of the batches










	
batches_list

	



	Returns:	list of batches names










	
data_path

	



	Returns:	the disk path of batches










	
dictionary

	



	Returns:	Dictionary object, if parameter gather_dictionary was True, else None










	
num_batches

	



	Returns:	the number of batches










	
weights

	



	Returns:	list of batches weights

















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Dictionary
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
Dictionary

This page describes Dictionary class.


	
class artm.Dictionary(name=None, dictionary_path=None, data_path=None)

	
	
__init__(name=None, dictionary_path=None, data_path=None)

	



	Parameters:	
	name (str) – name of the dictionary

	dictionary_path (str) – can be used for default call of load() method          in constructor

	data_path (str) – can be used for default call of gather() method          in constructor









Note: all parameters are optional






	
copy()

	



	Description:	returns a copy the dictionary loaded in lib with another name.










	
create(dictionary_data)

	



	Description:	creates dictionary using DictionaryData object


	Parameters:	dictionary_data (DictionaryData instance) – configuration of dictionary










	
filter(class_id=None, min_df=None, max_df=None, min_df_rate=None, max_df_rate=None, min_tf=None, max_tf=None)

	



	Description:	filters the BigARTM dictionary of the collection, which                      was already loaded into the lib




	Parameters:	
	dictionary_name (str) – name of the dictionary in the lib to filter

	dictionary_target_name (str) – name for the new filtered dictionary in the lib

	class_id (str) – class_id to filter

	min_df (float) – min df value to pass the filter

	max_df (float) – max df value to pass the filter

	min_df_rate (float) – min df rate to pass the filter

	max_df_rate (float) – max df rate to pass the filter

	min_tf (float) – min tf value to pass the filter

	max_tf (float) – max tf value to pass the filter






	Note:	the current dictionary will be replaced with filtered












	
gather(data_path, cooc_file_path=None, vocab_file_path=None, symmetric_cooc_values=False)

	



	Description:	creates the BigARTM dictionary of the collection,                      represented as batches and load it in the lib




	Parameters:	
	data_path (str) – full path to batches folder

	cooc_file_path (str) – full path to the file with cooc info

	vocab_file_path (str) – full path to the file with vocabulary.                      If given, the dictionary token will have the same order, as in                      this file, otherwise the order will be random

	symmetric_cooc_values (bool) – if the cooc matrix should considered                      to be symmetric or not














	
load(dictionary_path)

	



	Description:	loads the BigARTM dictionary of the collection into the lib


	Parameters:	dictionary_path (str) – full filename of the dictionary










	
load_text(dictionary_path, encoding='utf-8')

	



	Description:	loads the BigARTM dictionary of the collection from the disk                      in the human readable text format




	Parameters:	
	dictionary_path (str) – full file name of the text dictionary file

	encoding (str) – an encoding of text in diciotnary














	
save(dictionary_path)

	



	Description:	saves the BigARTM dictionary of the collection on the disk


	Parameters:	dictionary_path (str) – full file name for the dictionary










	
save_text(dictionary_path, encoding='utf-8')

	



	Description:	saves the BigARTM dictionary of the collection on the disk                      in the human readable text format




	Parameters:	
	dictionary_path (str) – full file name for the text dictionary file

	encoding (str) – an encoding of text in diciotnary





















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Regularizers
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
Regularizers

This page describes KlFunctionInfo and *Regularizer classes.

See detailed descrition of regularizers [https://github.com/bigartm/bigartm/wiki/Implemented-regularizers] for understanding their sense.


	
class artm.KlFunctionInfo(function_type='log', power_value=2.0)

	
	
__init__(function_type='log', power_value=2.0)

	



	Parameters:	
	function_type (str) – the type of function, ‘log’ (logarithm) or ‘pol’ (polynomial)

	power_value (float) – the double power of polynomial, ignored if type = ‘log’


















	
class artm.SmoothSparsePhiRegularizer(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictionary=None, kl_function_info=None, config=None)

	
	
__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictionary=None, kl_function_info=None, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	gamma (float) – the coefficient of relative regularization for this regularizer

	class_ids (list of str) – list of class_ids to regularize, will                                     regularize all classes if not specified

	topic_names (list of str) – list of names of topics to regularize,                                     will regularize all topics if not specified

	dictionary (str or reference to Dictionary object) – BigARTM collection dictionary,                                     won’t use dictionary if not specified

	kl_function_info (KlFunctionInfo object) – class with additional info about                                     function under KL-div in regularizer

	config (protobuf object) – the low-level config of this regularizer


















	
class artm.SmoothSparseThetaRegularizer(name=None, tau=1.0, topic_names=None, alpha_iter=None, kl_function_info=None, config=None)

	
	
__init__(name=None, tau=1.0, topic_names=None, alpha_iter=None, kl_function_info=None, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	alpha_iter (list of str) – list of additional coefficients of regularization on each iteration                           over document. Should have length equal to model.num_document_passes

	topic_names (list of str) – list of names of topics to regularize,                                     will regularize all topics if not specified

	kl_function_info (KlFunctionInfo object) – class with additional info about                                     function under KL-div in regularizer

	config (protobuf object) – the low-level config of this regularizer


















	
class artm.DecorrelatorPhiRegularizer(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, config=None)

	
	
__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	gamma (float) – the coefficient of relative regularization for this regularizer

	class_ids (list of str) – list of class_ids to regularize, will                                     regularize all classes if not specified

	topic_names (list of str) – list of names of topics to regularize,                                     will regularize all topics if not specified

	config (protobuf object) – the low-level config of this regularizer


















	
class artm.LabelRegularizationPhiRegularizer(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictionary=None, config=None)

	
	
__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictionary=None, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	gamma (float) – the coefficient of relative regularization for this regularizer

	class_ids (list of str) – list of class_ids to regularize, will                                     regularize all classes if not specified

	topic_names (list of str) – list of names of topics to regularize,                                     will regularize all topics if not specified

	dictionary (str or reference to Dictionary object) – BigARTM collection dictionary,                                     won’t use dictionary if not specified

	config (protobuf object) – the low-level config of this regularizer


















	
class artm.SpecifiedSparsePhiRegularizer(name=None, tau=1.0, gamma=None, topic_names=None, class_id=None, num_max_elements=None, probability_threshold=None, sparse_by_columns=True, config=None)

	
	
__init__(name=None, tau=1.0, gamma=None, topic_names=None, class_id=None, num_max_elements=None, probability_threshold=None, sparse_by_columns=True, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	gamma (float) – the coefficient of relative regularization for this regularizer

	class_id – class_id to regularize

	topic_names (list of str) – list of names of topics to regularize,                                     will regularize all topics if not specified

	num_max_elements (int) – number of elements to save in row/column

	probability_threshold (float) – if m elements in row/column sum into value >=                                     probability_threshold, m < n => only these elements would                                     be saved. Value should be in (0, 1), default=None

	sparse_by_columns (bool) – find max elements in column or in row

	config (protobuf object) – the low-level config of this regularizer


















	
class artm.ImproveCoherencePhiRegularizer(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictionary=None, config=None)

	
	
__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictionary=None, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	gamma (float) – the coefficient of relative regularization for this regularizer

	class_ids (list of str) – list of class_ids to regularize, will                                     regularize all classes if not specified,
dictionaty should contain pairwise tokens coocurancy info

	topic_names (list of str) – list of names of topics to regularize,                                     will regularize all topics if not specified

	dictionary (str or reference to Dictionary object) – BigARTM collection dictionary, won’t use dictionary if not                                     specified, in this case regularizer is useless

	config (protobuf object) – the low-level config of this regularizer


















	
class artm.SmoothPtdwRegularizer(name=None, tau=1.0, config=None)

	
	
__init__(name=None, tau=1.0, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	config (protobuf object) – the low-level config of this regularizer


















	
class artm.TopicSelectionThetaRegularizer(name=None, tau=1.0, topic_names=None, alpha_iter=None, config=None)

	
	
__init__(name=None, tau=1.0, topic_names=None, alpha_iter=None, config=None)

	



	Parameters:	
	name (str) – the identifier of regularizer, will be auto-generated if not specified

	tau (float) – the coefficient of regularization for this regularizer

	alpha_iter (list of str) – list of additional coefficients of regularization on each iteration                           over document. Should have length equal to model.num_document_passes

	topic_names (list of str) – list of names of topics to regularize,                                     will regularize all topics if not specified

	config (protobuf object) – the low-level config of this regularizer





















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Scores
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
Scores

This page describes *Scores classes.

See detailed descrition of scores [https://github.com/bigartm/bigartm/wiki/Implemented-scores] for understanding their sense.


	
class artm.SparsityPhiScore(name=None, class_id=None, topic_names=None, model_name=None, eps=None)

	
	
__init__(name=None, class_id=None, topic_names=None, model_name=None, eps=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	class_id (str) – class_id to score

	topic_names (list of str) – list of names of topics to regularize, will                            score all topics if not specified

	model_name – phi-like matrix to be scored (typically ‘pwt’ or ‘nwt’), ‘pwt’                           if not specified

	eps (float) – the tolerance const, everything < eps considered to be zero


















	
class artm.ItemsProcessedScore(name=None)

	
	
__init__(name=None)

	



	Parameters:	name (str) – the identifier of score, will be auto-generated if not specified














	
class artm.PerplexityScore(name=None, class_ids=None, topic_names=None, dictionary=None, use_unigram_document_model=None)

	
	
__init__(name=None, class_ids=None, topic_names=None, dictionary=None, use_unigram_document_model=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	class_ids (list of str) – class_id to score, means that tokens of all class_ids will be used

	dictionary (str or reference to Dictionary object) – BigARTM collection dictionary, won’t use                            dictionary if not specified

	use_unigram_document_model (bool) – use unigram document/collection model                            if token’s counter == 0


















	
class artm.SparsityThetaScore(name=None, topic_names=None, eps=None)

	
	
__init__(name=None, topic_names=None, eps=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	topic_names (list of str) – list of names of topics to regularize, will                            score all topics if not specified

	eps (float) – the tolerance const, everything < eps considered to be zero


















	
class artm.ThetaSnippetScore(name=None, item_ids=None, num_items=None)

	
	
__init__(name=None, item_ids=None, num_items=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	item_ids (list of int) – list of names of items to show, default=None

	num_items (int) – number of theta vectors to show from the beginning                                (no sense if item_ids was given)


















	
class artm.TopicKernelScore(name=None, class_id=None, topic_names=None, eps=None, dictionary=None, probability_mass_threshold=None)

	
	
__init__(name=None, class_id=None, topic_names=None, eps=None, dictionary=None, probability_mass_threshold=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	class_id (str) – class_id to score

	topic_names (list of str) – list of names of topics to regularize, will                            score all topics if not specified

	probability_mass_threshold (float) – the threshold for p(t|w) values to get                            token into topic kernel. Should be in (0, 1)

	dictionary (str or reference to Dictionary object) – BigARTM collection dictionary, won’t use                            dictionary if not specified

	eps (float) – the tolerance const, everything < eps considered to be zero


















	
class artm.TopTokensScore(name=None, class_id=None, topic_names=None, num_tokens=None, dictionary=None)

	
	
__init__(name=None, class_id=None, topic_names=None, num_tokens=None, dictionary=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	class_id (str) – class_id to score

	topic_names (list of str) – list of names of topics to regularize, will                            score all topics if not specified

	num_tokens (int) – number of tokens with max probability in each topic

	dictionary (str or reference to Dictionary object) – BigARTM collection dictionary, won’t use                            dictionary if not specified


















	
class artm.TopicMassPhiScore(name=None, class_id=None, topic_names=None, model_name=None, eps=None)

	
	
__init__(name=None, class_id=None, topic_names=None, model_name=None, eps=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	class_id (str) – class_id to score

	topic_names (list of str) – list of names of topics to regularize, will                            score all topics if not specified

	model_name – phi-like matrix to be scored (typically ‘pwt’ or ‘nwt’), ‘pwt’                           if not specified

	eps (float) – the tolerance const, everything < eps considered to be zero


















	
class artm.BackgroundTokensRatioScore(name=None, class_id=None, delta_threshold=None, save_tokens=None, direct_kl=None)

	
	
__init__(name=None, class_id=None, delta_threshold=None, save_tokens=None, direct_kl=None)

	



	Parameters:	
	name (str) – the identifier of score, will be auto-generated if not specified

	class_id (str) – class_id to score

	delta_threshold (float) – the threshold for KL-div between p(t|w) and p(t) to get                            token into background. Should be non-negative

	save_tokens (bool) – save background tokens or not, save if field not specified

	direct_kl (bool) – use KL(p(t) || p(t|w)) or via versa, true if field not specified





















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Score Tracker
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
Score Tracker

This page describes *ScoreTracker classes.


	
class artm.score_tracker.SparsityPhiScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	value - values of Phi sparsity.

	zero_tokens - number of zero rows in Phi.

	total_tokens - number of all rows in Phi.

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.SparsityThetaScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	value - values of Theta sparsity.

	zero_topics - number of zero rows in Theta.

	total_topics - number of all rows in Theta.

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.PerplexityScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	value - values of perplexity.

	raw - raw values in formula for perplexity.

	normalizer - normalizer values in formula for perplexity.

	zero_tokens - number of zero p(w|d) = sum_t p(w|t) p(t|d).

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.TopTokensScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	num_tokens - number of requested top tokens.

	coherence - each element of list is a dict, key - topic name, value - topic coherence                      counted using top-tokens

	average_coherence - average coherencies of all scored topics.

	tokens - each element of list is a dict, key - topic name, value - list of top-tokens

	weights - each element of list is a dict, key - topic name, value - list of weights of                    corresponding top-tokens (weight of token == p(w|t))

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.TopicKernelScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	tokens - each element of list is a dict, key - topic name, value - list of kernel tokens

	size - each element of list is a dict, key - topic name, value - kernel size

	contrast - each element of list is a dict, key - topic name, value - kernel contrast

	purity - each element of list is a dict, key - topic name, value - kernel purity

	coherence - each element of list is a dict, key - topic name, value - topic coherence                      counted using kernel tokens

	average_size - average kernel size of all scored topics.

	average_contrast - average kernel contrast of all scored topics.

	average_purity - average kernel purity of all scored topics.

	average_coherence - average coherencies of all scored topics.

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.ItemsProcessedScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	value - numbers of processed documents.

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.ThetaSnippetScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	document_ids - each element of list is a list of ids of returned documents.

	snippet - each element of list is a dict, key - doc id, value - list with                    corresponding p(t|d) values.

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.TopicMassPhiScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	value - values of ratio of sum_t n_t of scored topics.and all topics

	topic_mass - each value is a dict, key - topic name, value - topic mass n_t

	topic_ratio - each value is a dict, key - topic name, value - topic ratio

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.ClassPrecisionScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	value - values of ratio of correct predictions.

	error - numbers of error predictiona.

	total - numbers of all predictions.

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.












	
class artm.score_tracker.BackgroundTokensRatioScoreTracker(score)

	
	
__init__(score)

	



	Properties:	






	Note: every field is a list of info about score on all synchronizations.

	value - values of part of background tokens.

	tokens - each element of list is a lists of background tokens                   (can be acceced if ‘save_tokens’ was True)

	Note: every field has a version with prefix ‘last_‘, means retrieving only          info about the last synchronization.















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Master Component
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Python Interface 
 
      

    


    
      
          
            
  
Master Component

This page describes MasterComponent class.


	
class artm.MasterComponent(library, topic_names=None, class_ids=None, scores=None, regularizers=None, num_processors=None, pwt_name=None, nwt_name=None, num_document_passes=None, reuse_theta=None, cache_theta=False)

	
	
__init__(library, topic_names=None, class_ids=None, scores=None, regularizers=None, num_processors=None, pwt_name=None, nwt_name=None, num_document_passes=None, reuse_theta=None, cache_theta=False)

	



	Parameters:	
	library – an instance of LibArtm

	topic_names (list of str) – list of topic names to use in model

	class_ids (dict) – key - class_id, value - class_weight

	scores (dict) – key - score name, value - config

	regularizers (dict) – key - regularizer name, value - tuple (config, tau)                                  or triple (config, tau, gamma)

	num_processors (int) – number of worker threads to use for processing the collection

	pwt_name (str) – name of pwt matrix

	nwt_name (str) – name of nwt matrix

	num_document_passes (in) – num passes through each document

	reuse_theta (bool) – reuse Theta from previous iteration or not

	cache_theta (bool) – save or not the Theta matrix














	
attach_model(model)

	



	Parameters:	model (str) – name of matrix in BigARTM


	Returns:	
	messahes.TopicModel() object with info about Phi matrix

	numpy.ndarray with Phi data (i.e., p(w|t) values)














	
clear_score_array_cache()

	Clears all entries from score array cache






	
clear_score_cache()

	Clears all entries from score cache






	
clear_theta_cache()

	Clears all entries from theta matrix cache






	
create_dictionary(dictionary_data, dictionary_name=None)

	



	Parameters:	
	dictionary_data – an instance of DictionaryData with info about dictionary

	dictionary_name (str) – name of exported dictionary














	
create_regularizer(name, config, tau, gamma=None)

	



	Parameters:	
	name (str) – the name of the future regularizer

	config – the config of the future regularizer

	tau (float) – the coefficient of the regularization














	
create_score(name, config, model_name=None)

	



	Parameters:	
	name (str) – the name of the future score

	config – an instance of ***ScoreConfig














	
export_dictionary(filename, dictionary_name)

	



	Parameters:	
	filename (str) – full name of dictionary file

	dictionary_name (str) – name of exported dictionary














	
export_model(model, filename)

	




	
filter_dictionary(dictionary_name=None, dictionary_target_name=None, class_id=None, min_df=None, max_df=None, min_df_rate=None, max_df_rate=None, min_tf=None, max_tf=None, args=None)

	



	Parameters:	
	dictionary_name (str) – name of the dictionary in the core to filter

	dictionary_target_name (str) – name for the new filtered dictionary in the core

	class_id (str) – class_id to filter

	min_df (float) – min df value to pass the filter

	max_df (float) – max df value to pass the filter

	min_df_rate (float) – min df rate to pass the filter

	max_df_rate (float) – max df rate to pass the filter

	min_tf (float) – min tf value to pass the filter

	max_tf (float) – max tf value to pass the filter

	args – an instance of FilterDictionaryArgs














	
fit_offline(batch_filenames=None, batch_weights=None, num_collection_passes=None, batches_folder=None)

	



	Parameters:	
	batch_filenames (list of str) – name of batches to process

	batch_weights (list of float) – weights of batches to process

	num_collection_passes (int) – number of outer iterations

	batches_folder (str) – folder containing batches to process














	
fit_online(batch_filenames=None, batch_weights=None, update_after=None, apply_weight=None, decay_weight=None, async=None)

	



	Parameters:	
	batch_filenames (list of str) – name of batches to process

	batch_weights (list of float) – weights of batches to process

	update_after (list of int) – number of batches to be passed for Phi synchronizations

	apply_weight (list of float) – weight of applying new counters                (len == len of update_after)

	decay_weight (list of float) – weight of applying old counters                (len == len of update_after)

	async (bool) – whether to use the async implementation                of the EM-algorithm or not














	
gather_dictionary(dictionary_target_name=None, data_path=None, cooc_file_path=None, vocab_file_path=None, symmetric_cooc_values=None, args=None)

	



	Parameters:	
	dictionary_target_name (str) – name of the dictionary in the core

	data_path (str) – full path to batches folder

	cooc_file_path (str) – full path to the file with cooc info

	vocab_file_path (str) – full path to the file with vocabulary

	symmetric_cooc_values (bool) – whether the cooc matrix should                considered to be symmetric or not

	args – an instance of GatherDictionaryArgs














	
get_dictionary(dictionary_name)

	



	Parameters:	dictionary_name (str) – name of dictionary to get










	
get_info()

	




	
get_phi_info(model)

	



	Parameters:	model (str) – name of matrix in BigARTM


	Returns:	messages.TopicModel object










	
get_phi_matrix(model, topic_names=None, class_ids=None, use_sparse_format=None)

	



	Parameters:	
	model (str) – name of matrix in BigARTM

	topic_names (list of str or None) – list of topics to retrieve (None means all topics)

	class_ids (list of str or None) – list of class ids to retrieve (None means all class ids)

	use_sparse_format (bool) – use sparsedense layout






	Returns:	numpy.ndarray with Phi data (i.e., p(w|t) values)












	
get_score(score_name)

	



	Parameters:	
	score_name (str) – the user defined name of score to retrieve

	score_config – reference to score data object














	
get_score_array(score_name)

	



	Parameters:	
	score_name (str) – the user defined name of score to retrieve

	score_config – reference to score data object














	
get_theta_info()

	



	Returns:	messages.ThetaMatrix object










	
get_theta_matrix(topic_names=None)

	



	Parameters:	topic_names (list of str or None) – list of topics to retrieve (None means all topics)


	Returns:	numpy.ndarray with Theta data (i.e., p(t|d) values)










	
import_dictionary(filename, dictionary_name)

	



	Parameters:	
	filename (str) – full name of dictionary file

	dictionary_name (str) – name of imported dictionary














	
import_model(model, filename)

	



	Parameters:	
	model (str) – name of matrix in BigARTM

	filename (str) – the name of file to load model from binary format














	
initialize_model(model_name=None, topic_names=None, dictionary_name=None, seed=None, args=None)

	



	Parameters:	
	model_name (str) – name of pwt matrix in BigARTM

	topic_names (list of str) – the list of names of topics to be used in model

	dictionary_name (str) – name of imported dictionary

	seed (unsigned int or -1, default None) – seed for random initialization, None means no seed

	args – an instance of InitilaizeModelArgs














	
merge_model(models, nwt, topic_names=None)

	Merge multiple nwt-increments together.





	Parameters:	
	models (dict) – list of models with nwt-increments and their weights,                key - nwt_source_name, value - source_weight.

	nwt (str) – the name of target matrix to store combined nwt.                The matrix will be created by this operation.

	topic_names (list of str) – names of topics in the resulting model. By default model                names are taken from the first model in the list.














	
normalize_model(pwt, nwt, rwt=None)

	



	Parameters:	
	pwt (str) – name of pwt matrix in BigARTM

	nwt (str) – name of nwt matrix in BigARTM

	rwt (str) – name of rwt matrix in BigARTM














	
process_batches(pwt, nwt=None, num_document_passes=None, batches_folder=None, batches=None, regularizer_name=None, regularizer_tau=None, class_ids=None, class_weights=None, find_theta=False, reuse_theta=False, find_ptdw=False, predict_class_id=None)

	



	Parameters:	
	pwt (str) – name of pwt matrix in BigARTM

	nwt (str) – name of nwt matrix in BigARTM

	num_document_passes (int) – number of inner iterations during processing

	batches_folder (str) – full path to data folder (alternative 1)

	batches (list of str) – full file names of batches to process (alternative 2)

	regularizer_name (list of str) – list of names of Theta regularizers to use

	regularizer_tau (list of float) – list of tau coefficients for Theta regularizers

	class_ids (list of str) – list of class ids to use during processing

	class_weights (list of float) – list of corresponding weights of class ids

	find_theta (bool) – find theta matrix for ‘batches’ (if alternative 2)

	reuse_theta (bool) – initialize by theta from previous collection pass

	find_ptdw (bool) – calculate and return Ptdw matrix or not                (works if find_theta == False)

	predict_class_id (str, default None) – class_id of a target modality to predict






	Returns:	
	tuple (messages.ThetaMatrix, numpy.ndarray) — the info about Theta                    (if find_theta == True)

	messages.ThetaMatrix — the info about Theta (if find_theta == False)
















	
reconfigure(topic_names=None, class_ids=None, scores=None, regularizers=None, num_processors=None, pwt_name=None, nwt_name=None, num_document_passes=None, reuse_theta=None, cache_theta=None)

	




	
reconfigure_regularizer(name, config=None, tau=None, gamma=None)

	




	
reconfigure_score(name, config)

	




	
regularize_model(pwt, nwt, rwt, regularizer_name, regularizer_tau, regularizer_gamma=None)

	



	Parameters:	
	pwt (str) – name of pwt matrix in BigARTM

	nwt (str) – name of nwt matrix in BigARTM

	rwt (str) – name of rwt matrix in BigARTM

	regularizer_name (list of str) – list of names of Phi regularizers to use

	regularizer_tau (list of double) – list of tau coefficients for Phi regularizers














	
transform(batches=None, batch_filenames=None, theta_matrix_type=None, predict_class_id=None)

	



	Parameters:	
	batches – list of Batch instances

	batch_weights (list of float) – weights of batches to transform

	theta_matrix_type (int) – type of matrix to be returned

	predict_class_id (int) – type of matrix to be returned






	Returns:	messages.ThetaMatrix object



















          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Release Notes
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Release Notes



	Changes in Python API
	v0.8.1

	v0.8.0

	v0.7.x





	Changes in Protobuf Messages
	v0.8.0

	v0.7.x





	Changes in BigARTM CLI
	v0.8.0

	v0.7.x





	Changes in c_interface
	v0.8.0

	v0.7.x





	BigARTM v0.7.X Release Notes
	BigARTM v0.7.0 Release notes

	BigARTM v0.7.1 Release notes

	BigARTM v0.7.2 Release notes

	BigARTM v0.7.3 Release notes

	BigARTM v0.7.4 Release notes













          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Changes in Python API
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Changes in Python API

This page describes recent changes in BigARTM’s Python API.
Note that the API might be affected by changes in the underlying protobuf messages.
For this reason we recommend to review Changes in Protobuf Messages.

For further reference about Python API refer to ARTM model,
Q & A [https://github.com/bigartm/bigartm/wiki/Q&A] or tutorials [https://github.com/bigartm/bigartm-book/blob/master/README.md].


v0.8.1


	New source type ‘bow_n_wd’ was added into BatchVectorizer class. This type oriented on using the output of CountVectorizer and TfIdfVectorizers classes from sklearn.
New parameters of BatchVectorizer are: n_wd (numpy.array) and vocabulary(dict)

	LDA model was added as one of the public interfaces. It is a restricted ARTM model created to simplify BigARTM usage for new users with few experience in topic modeling.

	BatchVectorizer got a flag ‘gather_dictionary’, which has default value ‘True’. This means that BV would create dictionary and save it in the BV.dictionary field.
For ‘bow_n_wd’ format the dictionary will be gathered whenever the flag was set to ‘False’ or to ‘True’.

	Add relative regularization for Phi matrix






v0.8.0


Warning

Note that your script can be affected by our changes in the default values for num_document_passes and reuse_theta parameters (see below).
We recommend to use our new default settings, num_document_passes = 10 and reuse_theta = False.
However, if you choose to explicitly set num_document_passes = 1 then make sure to also set reuse_theta = True,
otherwise you will experience very slow convergence.




	all operations to work with dictionaries were moved into a separate class artm.Dictionary.
(details in the documentation [http://docs.bigartm.org/en/master/python_interface/dictionary.html]).
The mapping between old and new methods is very straighforward:
ARTM.gather_dictionary is replaced with Dictionary.gather method, which allows to gather a dictionary from a set of batches;
ARTM.filter_dictionary is replaced with Dictionary.filter method, which allows to filter a dictionary based on term frequency and document frequency;
ARTM.load_dictionary is replaced with Dictionary.load method, which allows to load a dictionary previously exported to disk in Dictionary.save method;
ARTM.create_dictionary is replaced with Dictionary.create method, which allows to create a dictionary based on custom protobuf message DictionaryData, containing a set of dictionary entries;
etc... The following code snippet gives a basic example:

my_dictionary = artm.Dictionary()
my_dictionary.gather(data_path='my_collection_batches', vocab_file_path='vocab.txt')
my_dictionary.save(dictionary_path='my_collection_batches/my_dictionary')
my_dictionary.load(dictionary_path='my_collection_batches/my_dictionary.dict')
model = artm.ARTM(num_topics=20, dictionary=my_dictionary)
model.scores.add(artm.PerplexityScore(name='my_fisrt_perplexity_score',
                                      use_unigram_document_model=False,
                                      dictionary=my_dictionary))







	added library_version property to ARTM class to query for the version of the underlying BigARTM library; returns a string in MAJOR.MINOR.PATCH format;



	dictionary_name argument had been renamed to dictionary in many places across python interface, including scores and regularizers.
This is done because those arguments can now except not just a string, but also the artm.Dictionary class itself.



	with Dictionary class users no longer have to generate names for their dictionaries (e.g. the unique dictionary_name identifier that references the dictionary).
You may use Dictionary.name field to access to the underlying name of the dictionary.



	added dictionary argument to ARTM.__init__ constructor to let user initialize the model;
note that we’ve change the behavior that model is automatically initialized whenever user calls fit_offline or fit_online.
Now this is no longer the case, and we expect user to either pass a dictionary in ARTM.__init__ constructor, or manually call ARTM.initialize method.
If neither is performed then ARTM.fit_offline and ARTM.fit_online will throw an exception.



	added seed argument to ARTM.__init__ constructor to let user randomly initialize the model;



	added new score and score tracker BackgroundTokensRatio



	remove the default value from num_topics argument in ARTM.__init__ constructor, which previously was defaulting to num_topics = 10;
now user must always specify the desired number of topics;



	moved argument reuse_theta from fit_offline method into ARTM.__init__ constructor;
the argument is still used to indicate that the previous theta matrix should be re-used on the next pass over the collection;
setting reuse_theta = True in the constructor will now be applied to fit_online, which previously did not have this option.



	moved common argument num_document_passes from ARTM.fit_offline, ARTM.fit_online, ARTM.transform methods into ARTM.__init__ constructor.



	changed the default value of cache_theta parameter from True to False (in ARTM.__init__ constructor);
this is done to avoid excessive memory usage due to caching of the entire Theta matrix;
if caching is indeed required user has to manually turn it on by setting cache_theta = True.



	changed the default value of reuse_theta parameter from True to False (in ARTM.__init__ constructor);
the reason is the same as for changing the default for cache_theta parameter



	changed the default value of num_document_passes parameter from 1 to 10 (in ARTM.__init__ constructor);



	added arguments apply_weight, decay_weight and update_after in ARTM.fit_online method;
each argument accepts a list of floats;
setting all three arguments will override the default behavior of the online algorithm
that rely on a specific formula with tau0, kappa and update_every.



	added argument async (boolean flag) in ARTM.fit_online method for improved performance.



	added argument theta_matrix_type in ARTM.transform method;
potential values are: "dense_theta", "dense_ptdw", None; default matrix type is "dense_theta".



	introduced a separate method ARTM.remove_theta to clear cached theta matrix; remove corresponding boolean switch remove_theta from ARTM.get_theta method.



	removed ARTM.fit_transform method;
note that the name was confusing because this method has never fitted the model;
the purpose of ARTM.fit_transform was to retrieve Theta matrix after fitting the model (ARTM.fit_offline or ARTM.fit_online);
same functionality is now available via ARTM.get_theta method.



	introduced ARTM.get_score method, which will exist in parallel to score tracking functionality;
the goal for ARTM.get_score(score_name) is to always return the latest version of the score;
for Phi scores this means to calculate them on fly;
for Theta scores this means to return a score aggregated over last call to ARTM.fit_offline, ARTM.fit_online or ARTM.transform methods;
opposite to ARTM.get_score the score tracking functionality returns the overall history of a score.
For further details on score calculation refer to Q&A section [https://github.com/bigartm/bigartm/wiki/Q&A#how-to-calculate-perplexity-on-held-out-sample] in our wiki page.



	added data_weight in BatchVectorizer.__init__ constructor to let user specify an individual weight for each batch



	score tracker classes had been rewritten, so you should make minor changes in the code that retrieves scores; for example:



	added an API to initialize logging with custom logging directory, log level, etc...
Search out wiki page Q&A [https://github.com/bigartm/bigartm/wiki/Q&A] for more details.

# in v0.7.x
print model.score_tracker['Top100Tokens'].last_topic_info[topic_name].tokens

# in v0.8.0
last_tokens = model.score_tracker['Top100Tokens'].last_tokens
print last_tokens[topic_name]












v0.7.x

See BigARTM v0.7.X Release Notes.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Changes in Protobuf Messages
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Changes in Protobuf Messages


v0.8.0


Warning

New batches, created in BigARTM v0.8, CAN NOT be used in the previous versions of the library.
Old batches, created prior to BigARTM v0.8, can still be used. See below for details.




	added token_id and token_weight field in Item message, and obsoleted Item.field.
Internally the library will merge the content of Field.token_id and Field.token_weight
across all fields,
and store the result back into Item.token_id, Item.token_weight.
New Item message is as follows:

message Item {
  optional int32 id = 1;
  repeated Field field = 2;  // obsolete in BigARTM v0.8.0
  optional string title = 3;
  repeated int32 token_id = 4;
  repeated float token_weight = 5;
}







	renamed topics_count into num_topics across multiple messsages (TopicModel, ThetaMatrix, etc)



	renamed inner_iterations_count into num_document_passes in ProcessBatchesArgs



	renamed passes into num_collection_passes in FitOfflineMasterModelArgs



	renamed threads into num_processors in MasterModelConfig



	renamed topic_index field into topic_indices in TopicModel and ThetaMatrix messages



	added messages ScoreArray, GetScoreArrayArgs and ClearScoreArrayCacheArgs to bring score tracking functionality down into BigARTM core



	added messages BackgroundTokensRatioConfig and BackgroundTokensRatio (new score)



	moved model_name from GetScoreValueArgs into ScoreConfig;
this is done to support score tracking functionality in BigARTM core;
each Phi score needs to know which model to use in calculation



	removed topics_count from InitializeModelArgs; users must specify topic names in InitializeModelArgs.topic_name field



	removed topic_index from GetThetaMatrixArgs; users must specify topic names to retrieve in GetThetaMatrixArgs.topic_name



	removed batch field in GetThetaMatrixArgs and GetScoreValueArgs.batch messages;
users should use ArtmRequestTransformMasterModel or ArtmRequestProcessBatches to process new batches and calculate theta scores



	removed reset_scores flag in ProcessBatchesArgs; users should use new API ArtmClearScoreCache



	removed clean_cache flag in GetThetaMatrixArgs; users should use new API ArtmClearThetaCache



	removed MasterComponentConfig; users should user ArtmCreateMasterModel and pass MasterModelConfig



	removed obsolete fields in CollectionParserConfig; same arguments can be specified at GatherDictionaryArgs and passed to ArtmGatherDictionary



	removed Filter message in InitializeModelArgs; same arguments can be specified at FilterDictionaryArgs and passed to ArtmFilterDictionary



	removed batch_name from ImportBatchesArgs; the field is no longer needed; batches will be identified via their Batch.id identifier



	removed use_v06_api in MasterModelConfig



	removed ModelConfig message



	removed SynchronizeModelArgs, AddBatchArgs, InvokeIterationArgs, WaitIdleArgs messages; users should use new APIs based on MasterModel



	removed GetRegularizerStateArgs, RegularizerInternalState, MultiLanguagePhiInternalState messages



	removed model_name and model_name_cache in ThetaMatrix, GetThetaMatrixArgs and ProcessBatchesArgs;
the code of master component is simplified to only handle one theta matrix, so there is no longer any reason to identify theta matrix with model_name



	removed Stream message, MasterComponentConfig.stream field, and all stream_name fields across several messages;
train/test streaming functionality is fully removed; users are expected to manage their train and test collections (for example as separate folders with batches)



	removed use_sparse_bow field in several messages; the computation mode with dense matrices is no longer supported;



	renamed item_count into num_items in ThetaSnippetScoreConfig



	add global enum ScoreType as a replacement for enums Type from ScoreConfig and ScoreData messages



	add global enum RegularizerType as a replacement for enum Type from RegularizerConfig message



	add global enum MatrixLayout as a replacement for enum MatrixLayout from GetThetaMatrixArgs and GetTopicModelArgs messages



	add global enum ThetaMatrixType as a replacement for enum ThetaMatrixType from ProcessBatchesArgs and TransformMasterModelArgs messages



	renamed enum Type into SmoothType in SmoothPtdwConfig to avoid conflicts in C# messages



	renamed enum Mode into SparseMode in SpecifiedSparsePhiConfig to avoid conflicts in C# messages



	renamed enum Format into CollectionFormat in CollectionParserConfig to avoid conflicts in C# messages



	renamed enum NameType into BatchNameType in CollectionParserConfig to avoid conflicts in C# messages



	renamed field transform_type into type in TransformConfig to avoid conflicts in C# messages



	remove message CopyRequestResultArgs;
this is a breaking change; please check that


	all previous calls to ArtmCopyRequestResult are changed to to ArtmCopyRequestedMessage

	all previous calls to ArtmCopyRequestResultEx with request types GetThetaSecondPass and GetModelSecondPass are changed to ArtmCopyRequestedObject

	all previous calls to ArtmCopyRequestResultEx with DefaultRequestType are changed to ArtmCopyRequestedMessage





	remove field request_type in GetTopicModelArgs;
to request only topics and/or tokens users should set GetTopicModelArgs.matrix_layout to MatrixLayout_Sparse,
and GetTopicModelArgs.eps = 1.001 (any number greather that 1.0).



	change optional FloatArray into repeated float in field coherence of TopTokensScore



	change optional DoubleArray into repeated double in fields kernel_size, kernel_purity, kernel_contrast and coherence of TopicKernelScore



	change optional StringArray into repeated string in field topic_name of TopicKernelScore








v0.7.x

See BigARTM v0.7.X Release Notes.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Changes in BigARTM CLI
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Changes in BigARTM CLI


v0.8.0


	renamed --passes into --num-collection-passes

	renamed --num-inner-iterations into --num-document-passes

	removed --model-v06 option

	removed --use-dense-bow option






v0.7.x

See BigARTM v0.7.X Release Notes.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Changes in c_interface
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
Changes in c_interface


v0.8.0


	Removed ArtmCreateMasterComponent and ArtmReconfigureMasterComponent

	Removed ArtmCreateModel and ArtmReconfigureModel

	Removed ArtmAddBatch, ArtmInvokeIteration, ArtmWaitIdle, ArtmSynchronizeModel

	Removed ArtmRequestRegularizerState

	Renamed ArtmCopyRequestResult into ArtmCopyRequestedMessage

	Renamed ArtmCopyRequestResultEx into ArtmCopyRequestedObject

	Added ArtmClearThetaCache and ArtmClearScoreCache

	Added ArtmRequestScoreArray and ArtmClearScoreArrayCache

	Added GetArtmVersion to query for the version; returns a string in “<MAJOR>.<MINOR>.<PATCH>” format






v0.7.x

See BigARTM v0.7.X Release Notes.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM v0.7.X Release Notes
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 
 
      

    


    
      
          
            
  
BigARTM v0.7.X Release Notes



	BigARTM v0.7.0 Release notes
	New-style models

	Network modus operandi is removed

	Coherence regularizer and scores (experimental)





	BigARTM v0.7.1 Release notes
	BigARTM notebooks

	ArtmModel

	Coding Phi-regularizers in Python code

	Other changes

	Breaking changes





	BigARTM v0.7.2 Release notes
	Enhancements in Python APIs

	Enhancements in CLI interface





	BigARTM v0.7.3 Release notes
	New command line tool for BigARTM

	Support for classification in BigARTM CLI

	Support for asynchronous processing of batches

	TopicMass score for phi matrix

	Support for documents markup

	New API for importing batches through memory





	BigARTM v0.7.4 Release notes
	bigartm/stable branch

	MasterModel

	Rework of dictionaries

	Changes in the infrastructure

	Changes in core functionality

	Changes in Python API

	Changes in C++ interface

	Changes in console interface













          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM v0.7.0 Release notes
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 

          	BigARTM v0.7.X Release Notes 
 
      

    


    
      
          
            
  
BigARTM v0.7.0 Release notes

We are happy to introduce BigARTM v0.7.0, which brings you the following changes:


	New-style models

	Network modus operandi is removed

	Coherence regularizer and scores (experimental)




New-style models

BigARTM v0.7.0 exposes new APIs to give you additional control over topic model inference:


	ProcessBatches

	MergeModel

	RegularizeModel

	NormalizeModel



Besides being more flexible, new APIs bring many additional benefits:


	Fully deterministic inference, no dependency on threads scheduling or random numbers generation

	Less bottlenecks for performance (DataLoader and Merger threads are removed)

	Phi-matrix regularizers can be implemented externally

	Capability to output Phi matrices directly into your NumPy matrices (scheduled for BigARTM v0.7.2)

	Capability for store Phi matrices in sparse format (scheduled for BigARTM v0.7.3)

	Capability for async ProcessBatches and non-blocking online algorithm (BigARTM v0.7.4)

	Form solid foundation for high performance networking (BigARTM v0.8.X)



The picture below illustrates scalability of BigARTM v0.7.0 vs v0.6.4.
Top chart (in green) corresponds to CPU usage at 28 cores on machine with 32 virtual cores (16 physical cores + hyper threading).
As you see, new version is much more stable.
In addition, new version consumes less memory.

[image: BigARTM v0.7.0 vs v0.6.4]
Refer to the following examples that demonstrate usage of new APIs for offline, online and regularized topic modelling:


	example17_process_batches.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example17_process_batches.py]

	example18_merge_model.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example18_merge_model.py]

	example19_regularize_model.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example19_regularize_model.py]



Models, tuned with the new API are referred to as new-style models,
as opposite to old-style models inferred with AddBatch, InvokeIteration, WaitIdle and SynchronizeModel APIs.


Warning

For BigARTM v0.7.X we will continue to support old-style models.
However, you should consider upgrading to new-style models because old APIs
(AddBatch, InvokeIteration, WaitIdle and SynchronizeModel) are likely to be removed in future releases.



The following flow chart gives a typical use-case on new APIs in online regularized algorithm:

[image: Data flow in online regularized algorithm]
Notes on upgrading existing code to new-style models


	New APIs can only read batches from disk. If your current script passes batches via memory (in AddBatchArgs.batch field)
then you need to store batches on disk first, and then process them with ProcessBatches method.



	Initialize your model as follows:


	For python_interface: using MasterComponent.InitializeModel method

	For cpp_interface: using MasterComponent.InitializeModel method

	For c_interface: using ArtmInitializeModel method



Remember that you should not create ModelConfig in order to use this methods.
Pass your topics_count (or topic_name list) as arguments to InitializeModel method.



	Learn the difference between Phi and Theta scores, as well as between Phi and Theta regularizes. The following table gives an overview:








	Object
	Theta
	Phi




	Scores
	
	Perplexity

	SparsityTheta

	ThetaSnippet

	ItemsProcessed




	
	SparsityPhi

	TopTokens

	TopicKernel






	Regularizers
	
	SmoothSparseTheta




	
	DecorrelatorPhi

	ImproveCoherencePhi

	LabelRegularizationPhi

	SmoothSparsePhi

	SpecifiedSparsePhi









Phi regularizers needs to be calculated explicitly in RegularizeModel, and then applied in NormalizeModel (via optional rwt argument).
Theta regularizers needs to be enabled in ProcessBatchesArgs. Then they will be automatically calculated and applied during ProcessBatches.

Phi scores can be calculated at any moment based on the new-style model (same as for old-style models).
Theta scores can be retrieved in two equivalend ways:

pwt_model = "pwt"
master.ProcessBatches(pwt_model, batches, "nwt")
perplexity_score.GetValue(pwt_model).value





or

pwt_model = "pwt"
process_batches_result = master.ProcessBatches(pwt_model, batches, "nwt")
perplexity_score.GetValue(scores = process_batches_result).value





Second way is more explicit. However, the first way allows you to combine aggregate scores accross multiple ProcessBatches calls:

pwt_model = "pwt"
master.ProcessBatches(pwt_model, batches1, "nwt")
master.ProcessBatches(pwt_model, batches2, "nwt", reset_scores=False)
perplexity_score.GetValue(pwt_model).value





This works because BigARTM caches the result of ProcessBatches together (in association with pwt_model).
The reset_scores switch disables the default behaviour, which is to reset the cache for pwt_model at the beginning of each ProcessBatch call.



	Continue using GetThetaMatrix and GetTopicModel to retrieve results from the library.
For GetThetaMatrix to work you still need to enable cache_theta in master component.
Remember to use the same model in GetThetaMatrix as you used as the input to ProcessBatches.
You may also omit “target_nwt” argument in ProcessBatches if you are not interested in getting this output.

master.ProcessBatches("pwt", batches)
theta_matrix = master.GetThetaMatrix("pwt")







	Stop using certain APIs:


	For python_interface: stop using class Model and ModelConfig message

	For cpp_interface: stop using class Model and ModelConfig message

	For c_interface: stop using methods ArtmCreateModel, ArtmReconfigureModel, ArtmInvokeIteration, ArtmAddBatch, ArtmWaitIdle, ArtmSynchronizeModel







Notes on models handling (reusing, sharing input and output, etc)

Is allowed to output the result of ProcessBatches, NormalizeModel, RegularizeModel and MergeModel into an existing model.
In this case the existing model will be fully overwritten by the result of the operation.
For all operations except ProcessBatches it is also allowed to use the same model in inputs and as an output.
For example, typical usage of MergeModel involves combining “nwt” and “nwt_hat” back into “nwt”. This scenario is fully supported.
The output and input of ProcessBatches must refer to two different models.
Finally, note that MergeModel will ignore all non-existing models in the input (and log a warning).
However, if none of the input models exist then MergeModel will thrown an error.

Known differences


	Decorrelator regularizer will give slightly different result in the following scenario:

master.ProcessBatches("pwt", batches, "nwt")
master.RegularizeModel("pwt", "nwt", "rwt", phi_regularizers)
master.NormalizeModel("nwt", "pwt", "rwt")





To get the same result as from model.Synchronize() adjust your script as follows:

master.ProcessBatches("pwt", batches, "nwt")
master.NormalizeModel("nwt", "pwt_temp")
master.RegularizeModel("pwt_temp", "nwt", "rwt", phi_regularizers)
master.NormalizeModel("nwt", "pwt", "rwt")







	You may use GetThetaMatrix(pwt) to retrieve Theta-matrix, previously calculated for new-style models inside ProcessBatches.
However, you can not use GetThetaMatrix(pwt, batch) for new models.
They do not have corresponding ModelConfig, and as a result you need to go through ProcessBatches to pass all parameters.








Network modus operandi is removed

Network modus operandi had been removed from BigARTM v0.7.0.

This decision had been taken because current implementation struggle from many issues, particularly from poor performance and stability.
We expect to re-implement this functionality on top of new-style models.

Please, let us know if this caused issues for you, and we will consider to re-introduce networking in v0.8.0.




Coherence regularizer and scores (experimental)

Refer to example in
example16_coherence_score.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example16_coherence_score.py].







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM v0.7.1 Release notes
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 

          	BigARTM v0.7.X Release Notes 
 
      

    


    
      
          
            
  
BigARTM v0.7.1 Release notes

We are happy to introduce BigARTM v0.7.1, which brings you the following changes:


	BigARTM noteboks — new source of information about BigARTM

	ArtmModel — a brand new Python API

	Much faster retrieval of Phi and Theta matrices from Python

	Much faster dictionary imports from Python

	Auto-detect and use all CPU cores by default

	Fixed Import/Export of topic models (was broken in v0.7.0)

	New capability to implement Phi-regularizers in Python code

	Improvements in Coherence score



Before you upgrade to BigARTM v0.7.1 please review the changes that break backward compatibility.


BigARTM notebooks

BigARTM notebooks is your go-to links to read more ideas, examples and other information around BigARTM:


	BigARTM notebooks in English [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM.ipynb]

	BigARTM notebooks in Russian [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM_RU.ipynb]






ArtmModel

Best thing about ArtmModel is that this API had been designed by BigARTM users. Not by BigARTM programmers.
This means that BigARTM finally has a nice, clean and easy-to-use programming interface for Python.
Don’t believe it? Just take a look and some examples:


	ArtmModel examples in English [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb]

	ArtmModel examples in Russian [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb]



That is cool, right?
This new API allows you to load input data from several file formats, infer topic model,
find topic distribution for new documents, visualize scores, apply regularizers,
and perform many other actions.
Each action typically takes one line to write,
which allows you to work with BigARTM interactively from Python command line.

ArtmModel exposes most of BigARTM functionality,
and it should be sufficiently powerful to cover 95% of all BigARTM use-cases.
However, for the most advanced scenarios you might still need to go through the previous API
(artm.library [https://github.com/bigartm/bigartm/blob/master/python/artm/library.py]).
When in doubt which API to use, ask bigartm-users@googlegroups.com [https://groups.google.com/forum/#!forum/bigartm-users] — we are there to help!




Coding Phi-regularizers in Python code

This is of course one of those very advanced scenarios where you need to go down to the old API :)
Take a look at this example:


	example19_regularize_model [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example19_regularize_model.py]

	example20_attach_model [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example20_attach_model.py]



First one tells how to use Phi regularizers, built into BigARTM.
Second one provides a new capability to manipulate Phi matrix from Python.
We call this Attach numpy matrix to the model, because this is similar to attaching debugger (like gdb or Visual Studio) to a running application.

To implement your own Phi regularizer in Python you need to to attach to rwt model from the first example, and update its values.




Other changes

Fast retrieval of Phi and Theta matrices.
In BigARTM v0.7.1 dense Phi and Theta matrices will be retrieved to Python as numpy matrices.
All copying work will be done in native C++ code.
This is much faster comparing to current solution, where all data is transferred in
a large Protobuf message which needs to be deserialized in Python.
ArtmModel already takes advantage of this performance improvements.

Fast dictionary import.
BigARTM core now supports importing dictionary files from disk,
so you no longer have to load them to Python.
ArtmModel already take advantage of this performance improvement.

Auto-detect number of CPU cores.
You no longer need to specify num_processors parameter.
By default BigARTM will detect the number of cores on your machine and load all of them.
num_processors still can be used to limit CPU resources used by BigARTM.

Fixed Import/Export of topic models.
Export and Import of topic models will now work. As simple as this:


master.ExportModel("pwt", "file_on_disk.model")
master.ImportModel("pwt", "file_on_disk.model")








This will also take care of very large models above 1 GB that does not fit into single protobuf message.

Coherence scores.
Ask bigartm-users@googlegroups.com [https://groups.google.com/forum/#!forum/bigartm-users] if you are interested :)




Breaking changes


	Changes in Python methods MasterComponent.GetTopicModel and MasterComponent.GetThetaMatrix

From BigARTM v0.7.1 and onwards method MasterComponent.GetTopicModel of the low-level Python API will return a tuple,
where first argument is of type TopicModel (protobuf message), and second argument is a numpy matrix.
TopicModel message will keep all fields as usual, except token_weights field which will became empty.
Information from token_weights field had been moved to numpy matrix (rows = tokens, columns = topics).

Similarly, MasterComponent.GetThetaMatrix will also return a tuple,
where first argument is of type ThetaMatrix (protobuf message), and second argument is a numpy matrix.
ThetaMatrix message will keep all fields as usual, except item_weights field which will became empty.
Information from item_weights field had been moved to numpy matrix (rows = items, columns = topics).

Updated examples:


	example11_get_theta_matrix.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example11_get_theta_matrix.py]

	example12_get_topic_model [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example12_get_topic_model.py]




Warning

Use the followign syntax to restore the old behaviour:


	MasterComponent.GetTopicModel(use_matrix = False)

	MasterComponent.GetThetaMatrix(use_matrix = False)



This will return a complete protobuf message, without numpy matrix.





	Python method ParseCollectionOrLoadDictionary is now obsolete


	Use ParseCollection method to convert collection into a set of batches

	Use MasterComponent.ImportDictionary to load dictionary into BigARTM

	Updated example: example06_use_dictionaries.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example06_use_dictionaries.py]













          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM v0.7.2 Release notes
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 

          	BigARTM v0.7.X Release Notes 
 
      

    


    
      
          
            
  
BigARTM v0.7.2 Release notes

We are happy to introduce BigARTM v0.7.2, which brings you the following changes:


	Enhancements in high-level python API (ArtmModel -> ARTM)

	Enhancements in low-level python API (library.py -> master_component.py)

	Enhancements in CLI interface (cpp_client)

	Status and information retrievals from BigARTM

	Allow float token counts (token_count -> token_weight)

	Allow custom weights for each batch (ProcessBatchesArgs.batch_weight)

	Bug fixes and cleanup in the online documentation




Enhancements in Python APIs

Note that ArtmModel had been renamed to ARTM.
The naming conventions follow the same pattern as in scikit learn [http://scikit-learn.org]
(e.g. fit, transform and fit_transform methods).

Also note that all input data is now handled by BatchVectorizer class.

Refer to noteboods in English [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb]
and in Russian [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb]
for further details about ARTM interface.

Also note that previous low-level python API library.py is superseeded by a new API master_component.py.
For now both APIs are available, but the old one will be removed in future releases.
Refer to this folder [https://github.com/bigartm/bigartm/tree/master/python/tests/wrapper] for futher examples of the new low-level python API.

Remember that any use of low-level APIs is discouraged. Our recommendation is to always use the high-level python API ARTM,
and e-mail us know if some functionality is not exposed there.




Enhancements in CLI interface

BigARTM command line interface cpp_client had been enhanced with the following options:


	--load_model - to load model from file before processing

	--save_model - to save the model to binary file after processing

	--write_model_readable - to output the model in a human-readable format (CSV)

	--write_predictions - to write prediction in a human-readable format (CSV)

	--dictionary_min_df - to filter out tokens present in less than N documents / less than P% of documents

	--dictionary_max_df - filter out tokens present in less than N documents / less than P% of documents

	--tau0 - an option of the online algorith, describing the weight parameter in the online update formula. Optional, defaults to 1024.

	--kappa - an option of the online algorithm, describing the exponent parameter in the online update formula. Optional, defaults to 0.7.



Note that for --dictionary_min_df and --dictionary_max_df can be treated as number, fraction, percent.


	Use a percentage % sign to specify percentage value

	Use a floating value in [0, 1) range to specify a fraction

	Use an integer value (1 or greater) to indicate a number









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM v0.7.3 Release notes
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 

          	BigARTM v0.7.X Release Notes 
 
      

    


    
      
          
            
  
BigARTM v0.7.3 Release notes

BigARTM v0.7.3 releases the following changes:


	New command line tool for BigARTM

	Support for classification in bigartm CLI

	Support for asynchronous processing of batches

	Improvements in coherence regularizer and coherence score

	New TopicMass score for phi matrix

	Support for documents markup

	New API for importing batches through memory




New command line tool for BigARTM

New CLI is named bigartm (or bigrtm.exe on Windows),
and it supersedes previous CLI named cpp_client.
New CLI has the following features:


	Parse collection in one of the Formats

	Load dictionary

	Initialize a new model, or import previously created model

	Perform EM-iterations to fit the model

	Export predicted probabilities for all documents into CSV file

	Export model into a file



All command-line options are listed here [http://docs.bigartm.org/en/latest/tutorials/bigartm_cli.html],
and you may see several exampels on BigARTM [http://github.com/bigartm/bigartm] page at github.
At the moment full documentation is only available in Russian [https://github.com/bigartm/bigartm-book/blob/master/junk/cli/BigARTM_CommandLineInferface.ipynb].




Support for classification in BigARTM CLI

BigARTM CLI is now able to perform classification.
The following example assumes that your batches have target_class modality in addition to the default modality (@default_class).

# Fit model
bigartm.exe --use-batches <your batches>
            --use-modality @default_class,target_class
            --topics 50
            --dictionary-min-df 10
            --dictionary-max-df 25%
            --save-model model.bin

# Apply model and output to text files
bigartm.exe --use-batches <your batches>
            --use-modality @default_class,target_class
            --topics 50
            --passes 0
            --load-model model.bin
            --predict-class target_class
            --write-predictions pred.txt
            --write-class-predictions pred_class.txt
            --csv-separator=tab
            --score ClassPrecision








Support for asynchronous processing of batches

Asynchronous processing of batches enables applications to
overlap EM-iterations better utilize CPU resources.
The following chart shows CPU utilization of bigartm.exe
with (left-hand side) and without async flag (right-hand side).

[image: BigARTM performance in asynchronous mode]



TopicMass score for phi matrix

Topic mass score calculates cumulated topic mass for each topic.
This is a useful metric to monitor balance between topics.




Support for documents markup

Document markup provides topic distribution for each word in a document.
Since BigARTM v0.7.3 it is posible to extract this information to use it.
A potential application includes color-highlighted maps of the document,
where every work is colored according to the most probable topic of the document.

In the code this feature is refered to as ptdw matrix.
It is possible to extract and regularizer ptdw matrices.
In future versions it will be also possible to calculate scores based on ptdw matrix.




New API for importing batches through memory

New low-level APIs ArtmImportBatches and ArtmDisposeBatches
allow to import batches from memory into BigARTM.
Those batches are saved in BigARTM, and can be used for batches processing.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM v0.7.4 Release notes
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Release Notes 

          	BigARTM v0.7.X Release Notes 
 
      

    


    
      
          
            
  
BigARTM v0.7.4 Release notes

BigARTM v0.7.4 is a big release that includes major rework of dictionaries and MasterModel [https://github.com/bigartm/bigartm/issues/325].


bigartm/stable branch

Up until now BigARTM has only one master branch, containing the latest code.
This branch potentially includes untested code and unfinished features.
We are now introducing bigartm/stable branch, and encourage all users to
stop using master and start fetching from stable.
stable branch will be lagging behind master, and moved forward to master
as soon as mainteiners decide that it is ready.
At the same point we will introduce a new tag (something like v0.7.3 [https://github.com/bigartm/bigartm/tree/v0.7.3] )
and produce a new release for Windows.
In addition, stable branch also might receive small urgent fixes in between releases,
typically to address critical issues reported by our users.
Such fixes will be also included in master branch.




MasterModel

MasterModel is a new set of low-level APIs that allow users of C-interface to infer models and apply them to new data.
The APIs are ArtmCreateMasterModel, ArtmReconfigureMasterModel, ArtmFitOfflineMasterModel, ArtmFitOnlineMasterModel and ArtmRequestTransformMasterModel,
togehter with corresponding protobuf messages. For a usage example see src/bigartm/srcmain.cc.

This APIs should be easy to understand for the users who are familiar with Python interface. Basically, we take ARTM class in Python,
and push it down to the core.
Now users can create their model via MasterModelConfig (protobuf message),
fit via ArtmFitOfflineMasterModel or ArtmFitOnlineMasterModel, and apply to the new data via ArtmRequestTransformMasterModel.
This means that the user no longer has to orchestrate low-level building blocks such as ArtmProcessBatches, ArtmMergeModel, ArtmRegularizeModel and ArtmNormalizeModel.

ArtmCreateMasterModel is similar to ArtmCreateMasterComponent in a sence that it returns master_id,
which can be later passed to all other APIs. This mean that most APIs will continue working as before.
This applies to ArtmRequestThetaMatrix, ArtmRequestTopicModel, ArtmRequestScore, and many others.




Rework of dictionaries

Previous implementation of the dictionaries was really messy, and we are trying to clean this up. This effort is not finished yet, however we decided to release current version because
it is a major improvement comparing to the previous version.
At the low-level (c_interface), we now have the following methods to work with dictionaries:


	ArtmGatherDictionary collects a dictionary based on a folder with batches,

	ArtmFilterDictionary filter tokens from the dictinoary based on their term frequency or document frequency,

	ArtmCreateDictionary creates a dictionary from a custom DictionaryData object (protobuf message),

	ArtmRequestDictionary retrieves a dictionary as DictionaryData object (protobuf message),

	ArtmDisposeDictionary deletes dictionary object from BigARTM,

	ArtmImportDictionary import dictionary from binary file,

	ArtmExportDictionary expor tdictionary into binary file.



All dictionaries are identified by a string ID (dictionary_name).
Dictionaries can be used to initialize the model, in regularizers or in scores.

Note that ArtmImportDictionary and ArtmExportDictionary now uses a different format.
For this reason we require that all imported or exported files end with .dict extension.
This limitation is only introduced to make users aware of the change in binary format.


Warning

Please note that you have to re-generate all dictionaries, created in previous BigARTM versions.
To force this limitation we decided that
ArtmImportDictionary and ArtmExportDictionary will require
all imported or exported files end with .dict extension.
This limitation is only introduced to make users aware of the change in binary format.

Please note that in the next version (BigARTM v0.8.0) we are planing to break dictionary format once again.
This is because we will introduce boost.serialize library for all import and export methods.
From that point boost.serialize library will allow us to upgrade formats without breaking backwards compatibility.



The following example illustrate how to work with new dictionaries from Python.

# Parse collection in UCI format from D:\Datasets\docword.kos.txt and D:\Datasets\vocab.kos.txt
# and store the resulting batches into D:\Datasets\kos_batches
batch_vectorizer = artm.BatchVectorizer(data_format='bow_uci',
                                        data_path=r'D:\Datasets',
                                        collection_name='kos',
                                        target_folder=r'D:\Datasets\kos_batches')

# Initialize the model. For now dictionaries exist within the model,
# but we will address this in the future.
model = artm.ARTM(...)


# Gather dictionary named `dict` from batches.
# The resulting dictionary will contain all distinct tokens that occur
# in those batches, and their term frequencies
model.gather_dictionary("dict", "D:\Datasets\kos_batches")

# Filter dictionary by removing tokens with too high or too low term frequency
# Save the result as `filtered_dict`"
model.filter_dictionary(dictionary_name='dict',
                        dictionary_target_name='filtered_dict',
                        min_df=10, max_df_rate=0.4)

# Initialize model from `diltered_dict`
model.initialize("filtered_dict")

# Import/export functionality
model.save_dictionary("filtered_dict", "D:\Datasets\kos.dict")
model.load_dictionary("filtered_dict2",  "D:\Datasets\kos.dict")








Changes in the infrastructure


	Static linkage for bigartm command-line executable on Linux.
To disable static linkage use cmake -DBUILD_STATIC_BIGARTM=OFF ..

	Install BigARTM python API via python setup.py install






Changes in core functionality


	Custom transform function for KL-div regularizers

	Ability to initialize the model with custom seed

	TopicSelection regularizers

	PeakMemory score (Windows only)

	Different options to name batches when parsing collection
(GUID as today, and CODE for sequential numbering)






Changes in Python API


	ARTM.dispose() method for managing native memory

	ARTM.get_info() method to retrieve internal state

	Performance fixes

	Expose class prediction functionality






Changes in C++ interface


	Consume MasterModel APIs in C++ interface.
Going forward this is the only C++ interface that we will support.






Changes in console interface


	Better options to work with dictionaries

	--write-dictionary-readable to export dictionary

	--force switch to let user overwrite existing files

	--help generates much better examples

	--model-v06 to experiment with old APIs (ArtmInvokeIteration / ArtmWaitIdle / ArtmSynchronizeModel)

	--write-scores switch to export scores into file

	--time-limit option to time-box model inference(as an alternative to --passes switch)









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM Developer’s Guide
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
BigARTM Developer’s Guide

These pages describe the development process of BigARTM library.
If your intent to use BigARTM as a typical user, please proceed to
Basic BigARTM tutorial for Windows users or Basic BigARTM tutorial for Linux and Mac OS-X users,
depending on your operating system.
If you intent is to contribute to the development BigARTM, please proceed to the links below.



	Downloads (Windows)

	Source code

	Build C++ code on Windows

	Python code on Windows

	Compiling .proto files on Windows

	Working with iPython notebooks remotely

	Build C++ code on Linux

	Code style





Wiki pages:


	Create New Regularizer [https://github.com/bigartm/bigartm/wiki/Creating-new-regularizers]

	Q & A [https://github.com/bigartm/bigartm/wiki/Q&A]







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Downloads (Windows)
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Downloads (Windows)

Download and install the following tools:


	
	Git for Windows from http://git-scm.com/download/win

	
	https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20141217/Git-1.9.5-preview20141217.exe









	
	Github for Windows from https://windows.github.com/

	
	https://github-windows.s3.amazonaws.com/GitHubSetup.exe









	Visual Studio 2013 Express for Windows Desktop from https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx



	
	CMake from http://www.cmake.org/download/

	
	http://www.cmake.org/files/v3.0/cmake-3.0.2-win32-x86.exe









	
	Prebuilt Boost binaries from http://sourceforge.net/projects/boost/files/boost-binaries/, for example these two:

	
	http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-32.exe/download

	http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-64.exe/download









	
	Python from https://www.python.org/downloads/

	
	https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi

	https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi









	(optional) If you plan to build documentation, download and install sphinx-doc as described here: http://sphinx-doc.org/latest/index.html



	(optional) 7-zip – http://www.7-zip.org/a/7z920-x64.msi



	(optional) Putty – http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe





All explicit links are given just for convenience if you are setting up new environment.
You are free to choose other versions or tools, and most likely they will work just fine for BigARTM.
Remember to match the following:
* Visual Studio version must match Boost binaries version, unless you build Boost yourself
* Use the same configuration (32 bit or 64 bit) for your Python and BigARTM binaries





          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Source code
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Source code

BigARTM is hosted in public GitHub repository:

https://github.com/bigartm/bigartm

We maintain two branches: master [https://github.com/bigartm/bigartm/tree/master] and stable [https://github.com/bigartm/bigartm/tree/stable].
master branch is the latest source code, potentially including some unfinished features.
stable branch will be lagging behind master, and moved forward to master as soon as mainteiners decide that it is ready.
Typically this should happen at the end of each month.
At the same point we will introduce a new tag (something like v0.7.3 [https://github.com/bigartm/bigartm/tree/v0.7.3] ) and produce a new release for Windows.
In addition, stable branch also might receive small urgent fixes in between releases,
typically to address critical issues reported by our users. Such fixes will be also included in master branch.

To contribute a fix you should fork [https://help.github.com/articles/fork-a-repo] the repository,
code your fix and submit a pull request [https://help.github.com/articles/using-pull-requests]. against master branch.
All pull requests are regularly monitored by BigARTM maintainers and will be soon merged.
Please, keep monitoring the status of your pull request
on travis [https://travis-ci.org/bigartm/bigartm/pull_requests],
which is a continuous integration system used by BigARTM project.





          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Build C++ code on Windows
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Build C++ code on Windows

The following steps describe the procedure to build BigARTM’s C++ code on Windows.


	Download and install GitHub for Windows [http://windows.github.com/].



	Clone https://github.com/bigartm/bigartm/ repository to any location on your computer.
This location is further refered to as $(BIGARTM_ROOT).



	Download and install Visual Studio 2012 or any newer version.
BigARTM will compile just fine with any edition, including any Visual Studio Express edition (available
at www.visualstudio.com [http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx]).



	Install CMake [http://www.cmake.org/cmake/resources/software.html]
(tested with cmake-3.0.1, Win32 Installer).

Make sure that CMake executable is added to the PATH environmental variable.
To achieve this either select the option “Add CMake to the system PATH for all users”
during installation of CMake, or add it to the PATH manually.



	Download and install Boost 1.55 or any newer version.

We suggest to use the Prebuilt Windows Binaries [http://sourceforge.net/projects/boost/files/boost-binaries/].
Make sure to select version that match your version of Visual Studio.
You may choose to work with either x64 or Win32 configuration, both of them are supported.



	Configure system variables BOOST_ROOT and Boost_LIBRARY_DIR.

If you have installed boost from the link above, and used the default location, then the setting should look similar to this:

setx BOOST_ROOT C:\local\boost_1_56_0
setx BOOST_LIBRARYDIR C:\local\boost_1_56_0\lib32-msvc-12.0





For all future details please refer to the documentation of FindBoost module [http://www.cmake.org/cmake/help/v3.0/module/FindBoost.html].
We also encourage new CMake users to step through CMake tutorial [http://www.cmake.org/cmake/help/cmake_tutorial.html].



	Install Python 2.7
(tested with Python 2.7.6 [https://www.python.org/ftp/python/2.7.6/python-2.7.6.msi]).

You may choose to work with either x64 or Win32 version of the Python,
but make sure this matches the configuration of BigARTM you have choosed earlier.
The x64 installation of python will be incompatible with 32 bit BigARTM,
and virse versus.



	Use CMake to generate Visual Studio projects and solution files.
To do so, open a command prompt, change working directory to $(BIGARTM_ROOT)
and execute the following commands:

mkdir build
cd build
cmake ..





You might have to explicitly specify the cmake generator [http://www.cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html],
especially if you are working with x64 configuration. To do so, use the following syntax:

cmake .. -G"Visual Studio 12 Win64"





CMake will generate Visual Studio under $(BIGARTM_ROOT)/build/.



	Open generated solution in Visual Studio and build it as you would usually build any other Visual Studio solution.
You may also use MSBuild from Visual Studio command prompt.

The build will output result into the following folders:


	$(BIGARTM_ROOT)/build/bin/[Debug|Release] — binaries (.dll and .exe)

	$(BIGARTM_ROOT)/build/lib/[Debug|Release] — static libraries







At this point you should be able to run BigARTM tests, located here:
$(BIGARTM_ROOT)/build/bin/*/artm_tests.exe.





          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Python code on Windows
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Python code on Windows


	Install Python 2.7 (this step is already done if you are following the instructions above),



	Add Python to the PATH environmental variable

http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7



	Follow the instructions in README file in directory $(BIGARTM_ROOT)/3rdparty/protobuf/python/.
In brief, this instructions ask you to run the following commands:

python setup.py build
python setup.py test
python setup.py install





On second step you fill see two failing tests:

Ran 216 tests in 1.252s
FAILED (failures=2)





This 2 failures are OK to ignore.





At this point you should be able to run BigARTM tests for Python, located under $(BIGARTM_ROOT)/python/tests/.


	[Optional] Download and add to MSVS Python Tools 2.0.
All necessary instructions can be found at https://pytools.codeplex.com/.
This will allow you debug you Python scripts using Visual Studio.
You may start with the following solution: $(BIGARTM_ROOT)/src/artm_vs2012.sln.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Compiling .proto files on Windows
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Compiling .proto files on Windows


	Open a new command prompt



	Copy the following file into $(BIGARTM_ROOT)/src/


	$(BIGARTM_ROOT)/build/bin/CONFIG/protoc.exe



Here CONFIG can be either Debug or Release (both options will work equally well).



	Change working directory to $(BIGARTM_ROOT)/src/



	Run the following commands

.\protoc.exe --cpp_out=. --python_out=. .\artm\messages.proto
.\protoc.exe --cpp_out=. .\artm\core\internals.proto













          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Working with iPython notebooks remotely
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Working with iPython notebooks remotely

It turned out to be common scenario to run BigARTM on a Linux server (for example on Amazon EC2), while connecting to it from Windows through putty.
Here is a convenient way to use ipython notebook in this scenario:


	Connect to the Linux machine via putty [http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe].
Putty needs to be configured with dynamic tunnel for port 8888 as describe here on this page [https://anapnea.net/tut_putty_tunneling.php]
(port 8888 is a default port for ipython notebook).
The same page describes how to configure internet properties:

Clicking on Settings in Internet Explorer, or Proxy Settings in Google Chrome, should open this dialogue. Navigate through to the Advanced Proxy section and add localhost:9090 as a SOCKS Proxy.



	Start ipython notebook in your putty terminal.



	Open your favourite browser on Windows, and go to http://localhost:8888. Enjoy your notebook while the engine runs on remotely :)





[image: Working with iPython notebooks remotely]




          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Build C++ code on Linux
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Build C++ code on Linux

Refer to Basic BigARTM tutorial for Linux and Mac OS-X users.





          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Code style
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	BigARTM Developer’s Guide 
 
      

    


    
      
          
            
  
Code style


Configure Visual Studio

Open Tools / Text Editor / All languages / Tabs
and configure as follows:


	Indenting - smart,

	Tab size - 2,

	Indent size - 2,

	Select “insert spaces”.



We also suggest to configure Visual Studio to
show space and tab crlf characters [http://stackoverflow.com/questions/4065815/how-to-turn-off-showing-whitespace-characters-in-visual-studio-ide]
(shortcut: Ctrl+R, Ctrl+W),
and enable vertical line at 120 characters [http://stackoverflow.com/questions/9894397/100-characters-line-marker-in-visual-studio].



In the code we follow
google code style [http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml]
with the following changes:


	Exceptions are allowed

	Indentation must be 2 spaces. Tabs are not allowed.

	No lines should exceed 120 characters.



All .h and .cpp files under $(BIGARTM_ROOT)/src/artm/ must be verified for code style with
cpplint.py [https://raw.githubusercontent.com/google/styleguide/gh-pages/cpplint/cpplint.py] script.
Files, generated by protobuf compiler, are the only exceptions from this rule.

To run the script you need some version of Python installed on your machine.
Then execute the script like this:


python cpplint.py --linelength=120 <filename>


On Windows you may run this master-script to check all required files:


$(BIGARTM_ROOT/utils/cpplint_all.bat.






          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Legacy documentation pages
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            
  
Legacy documentation pages

Legacy pages are kept to preserve existing user’s links (favourites in browser, etc).



	Basic BigARTM tutorial for Linux and Mac OS-X users
	Download sources and build

	Running BigARTM from command line

	Configure BigARTM Python API

	Troubleshooting

	BigARTM on Travis-CI





	Basic BigARTM tutorial for Windows users
	Download

	Running BigARTM from command line

	Configure BigARTM Python API

	Running BigARTM from Python API





	Enabling Basic BigARTM Regularizers

	BigARTM as a Service

	BigARTM: The Algorithm Under The Hood

	Messages
	DoubleArray

	FloatArray

	BoolArray

	IntArray

	Item

	Field

	Batch

	Stream

	MasterComponentConfig

	ModelConfig

	RegularizerConfig

	SmoothSparseThetaConfig

	SmoothSparsePhiConfig

	DecorrelatorPhiConfig

	LabelRegularizationPhiConfig

	RegularizerInternalState

	DictionaryConfig

	DictionaryEntry

	ScoreConfig

	ScoreData

	PerplexityScoreConfig

	PerplexityScore

	SparsityThetaScoreConfig

	SparsityThetaScore

	SparsityPhiScoreConfig

	SparsityPhiScore

	ItemsProcessedScoreConfig

	ItemsProcessedScore

	TopTokensScoreConfig

	TopTokensScore

	ThetaSnippetScoreConfig

	ThetaSnippetScore

	TopicKernelScoreConfig

	TopicKernelScore

	TopicModel

	ThetaMatrix

	CollectionParserConfig

	SynchronizeModelArgs

	InitializeModelArgs

	GetTopicModelArgs

	GetThetaMatrixArgs

	GetScoreValueArgs

	AddBatchArgs

	InvokeIterationArgs

	WaitIdleArgs

	ExportModelArgs

	ImportModelArgs





	Plain C interface of BigARTM
	Introduction

	ArtmCreateMasterComponent

	ArtmReconfigureMasterComponent

	ArtmDisposeMasterComponent

	ArtmCreateModel

	ArtmReconfigureModel

	ArtmDisposeModel

	ArtmCreateRegularizer

	ArtmReconfigureRegularizer

	ArtmDisposeRegularizer

	ArtmCreateDictionary

	ArtmReconfigureDictionary

	ArtmDisposeDictionary

	ArtmAddBatch

	ArtmInvokeIteration

	ArtmSynchronizeModel

	ArtmInitializeModel

	ArtmExportModel

	ArtmImportModel

	ArtmWaitIdle

	ArtmOverwriteTopicModel

	ArtmRequestThetaMatrix

	ArtmRequestTopicModel

	ArtmRequestRegularizerState

	ArtmRequestScore

	ArtmRequestParseCollection

	ArtmRequestLoadDictionary

	ArtmRequestLoadBatch

	ArtmCopyRequestedMessage

	ArtmSaveBatch

	ArtmGetLastErrorMessage

	Error codes





	C++ interface
	MasterComponent

	Model

	Regularizer

	Dictionary

	Utility methods





	Windows distribution









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Basic BigARTM tutorial for Linux and Mac OS-X users
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
Basic BigARTM tutorial for Linux and Mac OS-X users

Currently there is no distribution package of BigARTM for Linux.
BigARTM had been tested on several Linux OS, and it is known to work well,
but you have to get the source code and compile it locally on your machine.


Download sources and build

Clone the latest BigARTM code from our github repository,
and build it via CMake as in the following script.

sudo apt-get install git make cmake build-essential libboost-all-dev
cd ~
git clone --branch=stable https://github.com/bigartm/bigartm.git
cd bigartm
mkdir build && cd build
cmake ..
make








Running BigARTM from command line

There is a simple utility bigartm, which allows you to run BigARTM from command line.
To experiment with this tool you need a small dataset, which you can get via the following script.
More datasets are available through Downloads page.

cd ~/bigartm
mkdir datasets && cd datasets
wget https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz
wget https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
gunzip docword.kos.txt.gz
../build/src/bigartm/bigartm -d docword.kos.txt -v vocab.kos.txt








Configure BigARTM Python API

For more advanced scenarios you need to configure Python interface for BigARTM.
To use BigARTM from Python you need to use Google Protobuf.
We recommend to use ‘protobuf 2.5.1-pre’, included in bigartm/3rdparty.

# Step 1 - add BigARTM python bindings to PYTHONPATH
export PYTHONPATH=~/bigartm/python:$PYTHONPATH

# Step 2 - install google protobuf
cd ~/bigartm
cp build/3rdparty/protobuf-cmake/protoc/protoc 3rdparty/protobuf/src/
cd 3rdparty/protobuf/python
python setup.py build
sudo python setup.py install

# Step 3 - point ARTM_SHARED_LIBRARY variable to libartm.so (libartm.dylib) location
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.so        # for linux
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.dylib     # for Mac OS X





At this point you may run examples under ~/bigartm/python/examples.




Troubleshooting

>python setup.py build
  File "setup.py", line 52
        print "Generating %s..." % output

SyntaxError: Missing parentheses in call to `print`





This error may happen during google protobuf installation.
It indicates that you are using Python 3, which is not supported by BigARTM.
(see this [http://stackoverflow.com/questions/826948/syntax-error-on-print-with-python-3]
question on StackOverflow for more details on the error around print).
Please use Python 2.7.9 to workaround this issue.

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
Traceback (most recent call last):
  File "example01_synthetic_collection.py", line 6, in <module>
    import artm.messages_pb2, artm.library, random, uuid
ImportError: No module named artm.messages_pb2





This error indicate that python is unable to locate messages_pb2.py and ``library.py files.
Please verify if you executed Step #1 in the instructions above.

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
Traceback (most recent call last):
  File "example01_synthetic_collection.py", line 6, in <module>
    import artm.messages_pb2, artm.library, random, uuid
  File "/home/ubuntu/bigartm/python/messages_pb2.py", line 4, in <module>
    from google.protobuf import descriptor as _descriptor
ImportError: No module named google.protobuf





This error indicated that python is unable to locate protobuf library.
Please verify if you executed Step #2 in the instructions above.
If you do not have permissions to execute sudo python setup.py install step, you may also try to update PYTHONPATH manually:
PYTHONPATH="/home/ubuntu/bigartm/3rdparty/protobuf/python:/home/ubuntu/bigartm/python:$PYTHONPATH".

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
libartm.so: cannot open shared object file: No such file or directory,
fall back to ARTM_SHARED_LIBRARY environment variable
Traceback (most recent call last):
  File "example01_synthetic_collection.py", line 27, in <module>
    with artm.library.MasterComponent() as master:
  File "/home/ubuntu/bigartm/python/artm/library.py", line 179, in __init__
    lib = Library().lib_
  File "/home/ubuntu/bigartm/python/artm/library.py", line 107, in __init__
    self.lib_ = ctypes.CDLL(os.environ['ARTM_SHARED_LIBRARY'])
  File "/usr/lib/python2.7/UserDict.py", line 23, in __getitem__
    raise KeyError(key)
KeyError: 'ARTM_SHARED_LIBRARY'





This error indicate that BigARTM’s python interface can not locate libartm.so (libartm.dylib) files.
Please verify if you executed Step #3 correctly.




BigARTM on Travis-CI

To get a live usage example of BigARTM you may check BigARTM’s
.travis.yml [https://raw.githubusercontent.com/bigartm/bigartm/master/.travis.yml]
script and the latest continuous integration build [https://travis-ci.org/bigartm/bigartm].







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Basic BigARTM tutorial for Windows users
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
Basic BigARTM tutorial for Windows users

This tutorial gives guidelines for installing and running existing BigARTM examples via command-line interface and from Python environment.


Download

Download latest binary distribution of BigARTM from https://github.com/bigartm/bigartm/releases.
Explicit download links can be found at Downloads section (for 32 bit and 64 bit configurations).

The distribution will contain pre-build binaries, command-line interface and BigARTM API for Python.
The distribution also contains a simple dataset and few python examples that we will be running in this tutorial.
More datasets in BigARTM-compatible format are available in the Downloads section.

Refer to Windows distribution for details about other files, included in the binary distribution package.




Running BigARTM from command line

No installation steps are required to run BigARTM from command line.
After unpacking binary distribution simply open command prompt (cmd.exe),
change current directory to bin folder inside BigARTM package, and run cpp_client.exe application as in the following example.
As an optional step, we recommend to add bin folder of the BigARTM distribution to your PATH system variable.

>C:\BigARTM\bin>set PATH=%PATH%;C:\BigARTM\bin
>C:\BigARTM\bin>cpp_client.exe -v ../python/examples/vocab.kos.txt -d ../python/examples/docword.kos.txt -t 4
Parsing text collection... OK.
Iteration 1 took  197 milliseconds.
    Test perplexity = 7108.35,
    Train perplexity = 7106.18,
    Test spatsity theta = 0,
    Train sparsity theta = 0,
    Spatsity phi = 0.000144802,
    Test items processed = 343,
    Train items processed = 3087,
    Kernel size = 5663,
    Kernel purity = 0.958901,
    Kernel contrast = 0.292389
Iteration 2 took  195 milliseconds.
    Test perplexity = 2563.31,
    Train perplexity = 2517.07,
    Test spatsity theta = 0,
    Train sparsity theta = 0,
    Spatsity phi = 0.000144802,
    Test items processed = 343,
    Train items processed = 3087,
    Kernel size = 5559.5,
    Kernel purity = 0.956709,
    Kernel contrast = 0.298198
...
#1: november(0.054) poll(0.015) bush(0.013) kerry(0.012) polls(0.012) governor(0.011)
#2: bush(0.0083) president(0.0059) republicans(0.0047) house(0.0042) people(0.0039) administration(0.0036)
#3: bush(0.031) iraq(0.018) war(0.012) kerry(0.0096) president(0.0078) administration(0.0076)
#4: kerry(0.018) democratic(0.013) dean(0.012) campaign(0.0097) poll(0.0095) race(0.0082)
ThetaMatrix (last 7 processed documents, ids = 1995,1996,1997,1998,1992,2000,1994):
Topic0: 0.02104 0.02155 0.00604 0.00835 0.00965 0.00006 0.91716
Topic1: 0.15441 0.76643 0.06484 0.11643 0.20409 0.00006 0.00957
Topic2: 0.00399 0.16135 0.00093 0.03890 0.10498 0.00001 0.00037
Topic3: 0.82055 0.05066 0.92819 0.83632 0.68128 0.99987 0.07289





We recommend to download larger datasets, available in Downloads section.
All docword and vocab files can be consumed by BigARTM exactly as in the previous example.

Internally BigARTM always parses such files into batches format
(for example, enron_1k (7.1 MB) [https://s3-eu-west-1.amazonaws.com/artm/enron_1k.7z]).
If you have downloaded such pre-parsed collection, you may feed it into BigARTM as follows:

>C:\BigARTM\bin>cpp_client.exe --batch_folder C:\BigARTM\enron
Reuse 40 batches in folder 'enron'
Loading dictionary file... OK.
Iteration 1 took  2502 milliseconds.





For more information about cpp_client.exe refer to /ref/cpp_client section.




Configure BigARTM Python API


	Install Python, for example from the following links:


	Python 2.7.9, 64 bit – https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi, or

	Python 2.7.9, 32 bit – https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi



Remember that the version of BigARTM package must match your version Python installed on your machine.
If you have 32 bit operating system then you must select 32 bit for Python and BigARTM package.
If you have 64 bit operating system then you are free to select either version.
However, please note that memory usage of 32 bit processes is limited by 2 GB.
For this reason we recommend to select 64 bit configurations.

Also you need to have several Python libraries to be installed on your machine:


	numpy >= 1.9.2

	scipy >= 0.15.0

	pandas >= 0.16.2

	scikit-learn >= 0.16.1





	Add C:\BigARTM\bin folder to your PATH system variable, and
add C:\BigARTM\python to your PYTHONPATH system variable:

set PATH=%PATH%;C:\BigARTM\bin
set PATH=%PATH%;C:\Python27;C:\Python27\Scripts
set PYTHONPATH=%PYTHONPATH%;C:\BigARTM\Python





Remember to change C:\BigARTM and C:\Python27 with your local folders.



	Setup Google Protocol Buffers library, included in the BigARTM release package.


	Copy C:\BigARTM\bin\protoc.exe file into C:\BigARTM\protobuf\src folder

	Run the following commands from command prompt



cd C:\BigARTM\protobuf\Python
python setup.py build
python setup.py install





Avoid python setup.py test step, as it produces several confusing errors. Those errors are harmless.
For further details about protobuf installation refer to protobuf/python/README [https://raw.githubusercontent.com/bigartm/bigartm/master/3rdparty/protobuf/python/README.txt].





If you are getting errors when configuring or using Python API,
please refer to Troubleshooting chapter in Basic BigARTM tutorial for Linux and Mac OS-X users.
The list of issues is common between Windows and Linux.




Running BigARTM from Python API

Refer to ARTM notebook
(in Russian [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb]
or in English [http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb]),
which describes high-level Python API of BigARTM.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Enabling Basic BigARTM Regularizers
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
Enabling Basic BigARTM Regularizers

This paper describes the experiment with topic model regularization in BigARTM library using
experiment02_artm.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/experiments/experiment02_artm.py].
The script provides the possibility to learn topic model with three regularizers
(sparsing Phi, sparsing Theta and pairwise topic decorrelation in Phi).
It also allows the monitoring of learning process by using quality measures as hold-out perplexity,
Phi and Theta sparsity and average topic kernel characteristics.


Warning

Note that perplexity estimation can influence the learning process in the online algorithm,
so we evaluate perplexity only once per 20 synchronizations to avoid this influence.
You can change the frequency using test_every variable.



We suggest you to have BigARTM installed in $YOUR_HOME_DIRECTORY.
To proceed the experiment you need to execute the following steps:


	Download the collection, represented as BigARTM batches:


	https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z

	https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z



This data represents a complete dump of the English Wikipedia (approximately 3.7 million documents).
The size of one batch in first version is 1000 documents and 10000 in the second one. We used 10000.
The decompressed folder with batches should be put into $YOUR_HOME_DIRECTORY.
You also need to move there the dictionary file from the batches folder.

The batch, you’d like to use for hold-out perplexity estimation, also must be placed into $YOUR_HOME_DIRECTORY.
In our experiment we used the batch named 243af5b8-beab-4332-bb42-61892df5b044.batch.



	The next step is the script preparation. Open it’s code and find the declaration(-s) of variable(-s)



	home_folder (line 8) and assign it the path $YOUR_HOME_DIRECTORY;

	batch_size (line 28) and assign it the chosen size of batch;

	batches_disk_path (line 36) and replace the string ‘wiki_10k’ with the name of your directory with batches;

	test_batch_name (line 43) and replace the string with direct batch’s name with the name of your test batch;

	tau_decor, tau_phi and tau_theta (lines 57-59) and substitute the values you’d like to use.








	If you want to estimate the final perplexity on another, larger test sample, put chosen batches into test folder (in $YOUR_HOME_DIRECTORY directory).
Then find in the code of the script the declaration of variable save_and_test_model (line 30) and assign it True.



	After all launch the script. Current measures values will be printed into console.
Note, that after synchronizations without perplexity estimation it’s value will be replaced with string ‘NO’.
The results of synchronizations with perplexity estimation in addition will be put in corresponding files in results folder.
The file format is general for all measures: the set of strings «(accumulated number of processed documents, measure value)»:

(10000, 0.018)
(220000, 0.41)
(430000, 0.456)
(640000, 0.475)
...





These files can be used for plot building.





If desired, you can easy change values of any variable in the code of script since it’s sense is clearly commented.
If you used all parameters and data identical our experiment you should get the results, close to these ones

[image: experiment02_artm]
Here you can see the results of comparison between ARTM and LDA models.
To make the experiment with LDA instead of ARTM you only need to change the values of variables tau_decor,
tau_phi and tau_theta to 0, 1 / topics_count and 1 / topics_count respectively and run the script again.


Warning

Note, that we used machine with 8 cores and 15 Gb RAM for our experiment.







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM as a Service
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
BigARTM as a Service

The following diagram shows a suggested topology for a query service that involve topic modelling on Big Data.

[image: cloud_service]
Here the main use for Hadoop / MapReduce is to process your Big Unstructured Data into a compact bag-of-words representation.
Due to out-of-core design and extreme performance BigARTM will be able to handle this data on a single compute-optimized node.
The resulting topic model should be replicated on all query instances that serve user requests.

To avoid query-time dependency on BigARTM component you may want to infer topic distributions theta_{td} for new documents in your code.
This can be done as follows. Start from uniform topic assigment theta_{td} = 1 / |T| and update it in the following loop:

[image: theta_update]
where n_dw is the number of word w occurences in document d, phi_wt is an element of the Phi matrix.
In BigARTM the loop is repeated ModelConfig.inner_iterations_count times (defaulst to 10).
To precisely replicate BigARTM behavior one needs to account for class weights and include regularizers.
Please contact us if you need more details.





          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    BigARTM: The Algorithm Under The Hood
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
BigARTM: The Algorithm Under The Hood

ToDo: link BigARTM to online batch PLSA algorithm.

ToDo: explain the notation in the algorithm.

ToDo: update the algortihm with regularization.

[image: Algorithm of BigARTM]
In this algorithm most CPU resources are consumed on steps 8-11
to infer topic distribution for each document. This operation
can be executed concurrently across documents or batches. In
BigARTM this parallelization is done across batches to avoid
splitting the work into too small junks.

Processing each batch produces counters $tilde n_{wt}$ and
$tilde n_{t}$, which should be then merged with the
corresponding counters coming from other batches. Since this
information is produced by multiple concurrent threads the
merging process should be thread-safe and properly
synchronised. Our solution is to store all counters $tilde
n_{wt}$ and $tilde n_{t}$ into a single queue, from where they
can be picked up by a single merger thread. This thread will
then accumulate the counters without any locking.

Further in this text the term outer iteration loop stands for
the loop at the step 2, and the term emph{inner iteration
loop} stands for the loop at step 8. Instead of “repeat until
it converges” criteria current implementation uses a fixed
number of iterations, which is configured manually by the user.

Step 15 is incorporated into all steps that require $phi_{wt}$
(e.g. into steps 9, 10 and 11). These steps utilize counters
from the previous iteration ($n^{i-1}_wt$ and $n^{i-1}_t$),
which are no longer updated by the merger thread, hence they
represent read-only data and can be accessed from multiple
threads without any synchronization. At the same time the
merger thread will accumulate counters for $n^i_{wt}$ and
$n^i_t$ for the current iteration, again in a lock-free manner.





          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Messages
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
Messages

This document explains all protobuf messages that can be transfered between the user code and BigARTM library.


Warning

Remember that all fields is marked as optional
to enhance backwards compatibility of the binary protobuf format.
Some fields will result in run-time exception when not specified.
Please refer to the documentation of each field for more details.



Note that we discourage any usage of fields marked as obsolete.
Those fields will be removed in future releases.


DoubleArray


	
class messages_pb2.DoubleArray

	



Represents an array of double-precision floating point values.

message DoubleArray {
  repeated double value = 1 [packed = true];
}








FloatArray


	
class messages_pb2.FloatArray

	



Represents an array of single-precision floating point values.

message FloatArray {
  repeated float value = 1 [packed = true];
}








BoolArray


	
class messages_pb2.BoolArray

	



Represents an array of boolean values.

message BoolArray {
  repeated bool value = 1 [packed = true];
}








IntArray


	
class messages_pb2.IntArray

	



Represents an array of integer values.

message IntArray {
  repeated int32 value = 1 [packed = true];
}








Item


	
class messages_pb2.Item

	



Represents a unit of textual information.
A typical example of an item is a document that belongs to some text collection.

message Item {
  optional int32 id = 1;
  repeated Field field = 2;
  optional string title = 3;
}






	
Item.id

	An integer identifier of the item.






	
Item.field

	A set of all fields withing the item.






	
Item.title

	An optional title of the item.








Field


	
class messages_pb2.Field

	



Represents a field withing an item.
The idea behind fields is that each item might have its
title, author, body, abstract, actual text, links, year of publication, etc. Each of this
entities should be represented as a Field. The topic model defines how those fields
should be taken into account when BigARTM infers a topic model. Currently each field is
represented as “bag-of-words” — each token is listed together with the number of its
occurrences. Note that each Field is always part of an Item, Item is part of a Batch, and
a batch always contains a list of tokens. Therefore, each Field just lists the indexes
of tokens in the Batch.

message Field {
  optional string name = 1 [default = "@body"];
  repeated int32 token_id = 2;
  repeated int32 token_count = 3;
  repeated int32 token_offset = 4;

  optional string string_value = 5;
  optional int64 int_value = 6;
  optional double double_value = 7;
  optional string date_value = 8;

  repeated string string_array = 16;
  repeated int64 int_array = 17;
  repeated double double_array = 18;
  repeated string date_array = 19;
}








Batch


	
class messages_pb2.Batch

	



Represents a set of items.
In BigARTM a batch is never split into smaller parts. When it comes to concurrency this means
that each batch goes to a single processor. Two batches can be processed concurrently, but
items in one batch are always processed sequentially.

message Batch {
  repeated string token = 1;
  repeated Item item = 2;
  repeated string class_id = 3;
  optional string description = 4;
  optional string id = 5;
}






	
Batch.token

	A set value that defines all tokens than may appear in the batch.






	
Batch.item

	A set of items of the batch.






	
Batch.class_id

	A set of values that define for classes (modalities) of tokens.
This repeated field must have the same length as token.
This value is optional, use an empty list indicate that all tokens belong to the default class.






	
Batch.description

	An optional text description of the batch.
You may describe for example the source of the batch,
preprocessing technique and the structure of its fields.






	
Batch.id

	Unique identifier of the batch in a form of a GUID
(example: 4fb38197-3f09-4871-9710-392b14f00d2e).
This field is required.








Stream


	
class messages_pb2.Stream

	



Represents a configuration of a stream.
Streams provide a mechanism to split the entire collection into virtual subsets (for example,
the ‘train’ and ‘test’ streams).

message Stream {
  enum Type {
    Global = 0;
    ItemIdModulus = 1;
  }

  optional Type type = 1 [default = Global];
  optional string name = 2 [default = "@global"];
  optional int32 modulus = 3;
  repeated int32 residuals = 4;
}






	
Stream.type

	A value that defines the type of the stream.







	Global
	
Defines a stream containing all items in the collection.






	ItemIdModulus
	
Defines a stream containing all items with ID that

matches modulus and residuals. An item belongs to the

stream iff the modulo reminder of item ID is contained

in the residuals field.














	
Stream.name

	A value that defines the name of the stream.
The name must be unique across all streams defined in the master component.








MasterComponentConfig


	
class messages_pb2.MasterComponentConfig

	



Represents a configuration of a master component.

message MasterComponentConfig {
  optional string disk_path = 2;
  repeated Stream stream = 3;
  optional bool compact_batches = 4 [default = true];
  optional bool cache_theta = 5 [default = false];
  optional int32 processors_count = 6 [default = 1];
  optional int32 processor_queue_max_size = 7 [default = 10];
  optional int32 merger_queue_max_size = 8 [default = 10];
  repeated ScoreConfig score_config = 9;
  optional bool online_batch_processing = 13 [default = false];  // obsolete in BigARTM v0.5.8
  optional string disk_cache_path = 15;
}






	
MasterComponentConfig.disk_path

	A value that defines the disk location to store or load the collection.






	
MasterComponentConfig.stream

	A set of all data streams to configure in master component.
Streams can overlap if needed.






	
MasterComponentConfig.compact_batches

	A flag indicating whether to compact batches in AddBatch() operation.
Compaction is a process that shrinks the dictionary of each batch by removing all
unused tokens.






	
MasterComponentConfig.cache_theta

	A flag indicating whether to cache theta matrix. Theta matrix defines the discrete
probability distribution of each document across the topics in topic model. By default
BigARTM infers this distribution every time it processes the document. Option
‘cache_theta’ allows to cache this theta matrix and re-use theha values when the same
document is processed on the next iteration. This option must be set to ‘true’ before
calling method ArtmRequestThetaMatrix().






	
MasterComponentConfig.processors_count

	A value that defines the number of concurrent processor components.
The number of processors should normally not exceed the number of CPU cores.






	
MasterComponentConfig.processor_queue_max_size

	A value that defines the maximal size of the processor queue.
Processor queue contains batches, prefetch from disk into memory.
Recommendations regarding the maximal queue size are as follows:


	the queue size should be at least as large as the number of concurrent
processors;








	
MasterComponentConfig.merger_queue_max_size

	A value that defines the maximal size of the merger queue.
Merger queue size contains an incremental updates of topic model,
produced by processor components.
Try reducing this parameter if BigARTM consumes too much memory.






	
MasterComponentConfig.score_config

	A set of all scores, available for calculation.






	
MasterComponentConfig.online_batch_processing

	Obsolete in BigARTM v0.5.8.






	
MasterComponentConfig.disk_cache_path

	A value that defines a writtable disk location where this master component can store some temporary files.
This can reduce memory usage, particularly when cache_theta option is enabled.
Note that on clean shutdown master component will will be cleaned this folder automatically,
but otherwise it is your responsibility to clean this folder to avoid running out of disk.








ModelConfig


	
class messages_pb2.ModelConfig

	



Represents a configuration of a topic model.

message ModelConfig {
  optional string name = 1 [default = "@model"];
  optional int32 topics_count = 2 [default = 32];
  repeated string topic_name = 3;
  optional bool enabled = 4 [default = true];
  optional int32 inner_iterations_count = 5 [default = 10];
  optional string field_name = 6 [default = "@body"];  // obsolete in BigARTM v0.5.8
  optional string stream_name = 7 [default = "@global"];
  repeated string score_name = 8;
  optional bool reuse_theta = 9 [default = false];
  repeated string regularizer_name = 10;
  repeated double regularizer_tau = 11;
  repeated string class_id = 12;
  repeated float class_weight = 13;
  optional bool use_sparse_bow = 14 [default = true];
  optional bool use_random_theta = 15 [default = false];
  optional bool use_new_tokens = 16 [default = true];
  optional bool opt_for_avx = 17 [default = true];
}






	
ModelConfig.name

	A value that defines the name of the topic model.
The name must be unique across all models defined in the master component.






	
ModelConfig.topics_count

	A value that defines the number of topics in the topic model.






	
ModelConfig.topic_name

	A repeated field that defines the names of the topics.
All topic names must be unique within each topic model.
This field is optional, but either topics_count or topic_name must be specified.
If both specified, then topics_count will be ignored, and the number of
topics in the model will be based on the length of topic_name field.
When topic_name is not specified the names for all topics will be autogenerated.






	
ModelConfig.enabled

	A flag indicating whether to update the model during iterations.






	
ModelConfig.inner_iterations_count

	A value that defines the fixed number of iterations, performed to infer the theta
distribution for each document.






	
ModelConfig.field_name

	Obsolete in BigARTM v0.5.8






	
ModelConfig.stream_name

	A value that defines which stream the model should use.






	
ModelConfig.score_name

	A set of names that defines which scores should be calculated for the model.






	
ModelConfig.reuse_theta

	A flag indicating whether the model should reuse theta values cached on the previous
iterations. This option require cache_theta flag to be set to ‘true’ in MasterComponentConfig.






	
ModelConfig.regularizer_name

	A set of names that define which regularizers should be enabled for the model.
This repeated field must have the same length as regularizer_tau.






	
ModelConfig.regularizer_tau

	A set of values that define the regularization coefficients of the corresponding regularizer.
This repeated field must have the same length as regularizer_name.






	
ModelConfig.class_id

	A set of values that define for which classes (modalities) to build topic model.
This repeated field must have the same length as class_weight.






	
ModelConfig.class_weight

	A set of values that define the weights of the corresponding classes (modalities).
This repeated field must have the same length as class_id.
This value is optional, use an empty list to set equal weights for all classes.






	
ModelConfig.use_sparse_bow

	A flag indicating whether to use sparse representation of the Bag-of-words data.
The default setting (use_sparse_bow = true) is best suited for processing textual collections
where every token is represented in a small fraction of all documents.
Dense representation (use_sparse_bow = false) better fits for non-textual collections
(for example for matrix factorization).

Note that class_weight and class_id must not be used together with use_sparse_bow=false.






	
ModelConfig.use_random_theta

	A flag indicating whether to initialize p(t|d) distribution with random uniform distribution.
The default setting (use_random_theta = false) sets p(t|d) = 1/T,
where T stands for topics_count.
Note that reuse_theta flag takes priority over use_random_theta flag,
so that if reuse_theta = true and there is a cache entry from previous iteration the cache entry
will be used regardless of use_random_theta flag.






	
ModelConfig.use_new_tokens

	A flag indicating whether to automatically include new tokens into the topic model.
This setting is set to True by default. As a result, every new token observed in batches
is automatically incorporated into topic model during the next model synchronization (ArtmSynchronizeModel()).
The n_wt_ weights for new tokens randomly generated from [0..1] range.






	
ModelConfig.opt_for_avx

	An experimental flag that allows to disable AVX optimization in processor.
By default this option is enabled as on average it adds ca. 40% speedup on physical hardware.
You may want to disable this option if you are running on Windows inside virtual machine,
or in situation when BigARTM performance degrades from iteration to interation.

This option does not affect the results, and is only intended for advanced users experimenting with BigARTM performance.








RegularizerConfig


	
class messages_pb2.RegularizerConfig

	



Represents a configuration of a general regularizer.

message RegularizerConfig {
  enum Type {
    SmoothSparseTheta = 0;
    SmoothSparsePhi = 1;
    DecorrelatorPhi = 2;
    LabelRegularizationPhi = 4;
  }

  optional string name = 1;
  optional Type type = 2;
  optional bytes config = 3;
}






	
RegularizerConfig.name

	A value that defines the name of the regularizer.
The name must be unique across all names defined in the master component.






	
RegularizerConfig.type

	A value that defines the type of the regularizer.







	SmoothSparseTheta
	Smooth-sparse regularizer for theta matrix


	SmoothSparsePhi
	Smooth-sparse regularizer for phi matrix


	DecorrelatorPhi
	Decorrelator regularizer for phi matrix


	LabelRegularizationPhi
	Label regularizer for phi matrix










	
RegularizerConfig.config

	A serialized protobuf message that describes regularizer config for
the specific regularizer type.








SmoothSparseThetaConfig


	
class messages_pb2.SmoothSparseThetaConfig

	



Represents a configuration of a SmoothSparse Theta regularizer.

message SmoothSparseThetaConfig {
  repeated string topic_name = 1;
  repeated float alpha_iter = 2;
}






	
SmoothSparseThetaConfig.topic_name

	A set of topic names that defines which topics in the model should be regularized.
This value is optional, use an empty list to regularize all topics.






	
SmoothSparseThetaConfig.alpha_iter

	A field of the same length as ModelConfig.inner_iterations_count
that defines relative regularization weight for every iteration inner iterations.
The actual regularization value is calculated as product of alpha_iter[i]
and ModelConfig.regularizer_tau.

To specify different regularization weight for different topics
create multiple regularizers with different topic_name set,
and use different values of ModelConfig.regularizer_tau.








SmoothSparsePhiConfig


	
class messages_pb2.SmoothSparsePhiConfig

	



Represents a configuration of a SmoothSparse Phi regularizer.

message SmoothSparsePhiConfig {
  repeated string topic_name = 1;
  repeated string class_id = 2;
  optional string dictionary_name = 3;
}






	
SmoothSparsePhiConfig.topic_name

	A set of topic names that defines which topics in the model should be regularized.
This value is optional, use an empty list to regularize all topics.






	
SmoothSparsePhiConfig.class_id

	This set defines which classes in the model should be regularized.
This value is optional, use an empty list to regularize all classes.






	
SmoothSparsePhiConfig.dictionary_name

	An optional value defining the name of the dictionary to use.
The entries of the dictionary are expected to have DictionaryEntry.key_token,
DictionaryEntry.class_id and DictionaryEntry.value fields.
The actual regularization value will be calculated as a product of
DictionaryEntry.value and ModelConfig.regularizer_tau.

This value is optional, if no dictionary is specified than all tokens will be
regularized with the same weight.








DecorrelatorPhiConfig


	
class messages_pb2.DecorrelatorPhiConfig

	



Represents a configuration of a Decorrelator Phi regularizer.

message DecorrelatorPhiConfig {
  repeated string topic_name = 1;
  repeated string class_id = 2;
}






	
DecorrelatorPhiConfig.topic_name

	A set of topic names that defines which topics in the model should be regularized.
This value is optional, use an empty list to regularize all topics.






	
DecorrelatorPhiConfig.class_id

	This set defines which classes in the model should be regularized.
This value is optional, use an empty list to regularize all classes.








LabelRegularizationPhiConfig


	
class messages_pb2.LabelRegularizationPhiConfig

	



Represents a configuration of a Label Regularizer Phi regularizer.

message LabelRegularizationPhiConfig {
  repeated string topic_name = 1;
  repeated string class_id = 2;
  optional string dictionary_name = 3;
}






	
LabelRegularizationPhiConfig.topic_name

	A set of topic names that defines which topics in the model should be regularized.






	
LabelRegularizationPhiConfig.class_id

	This set defines which classes in the model should be regularized.
This value is optional, use an empty list to regularize all classes.






	
LabelRegularizationPhiConfig.dictionary_name

	An optional value defining the name of the dictionary to use.








RegularizerInternalState


	
class messages_pb2.RegularizerInternalState

	



Represents an internal state of a general regularizer.

message RegularizerInternalState {
  enum Type {
    MultiLanguagePhi = 5;
  }

  optional string name = 1;
  optional Type type = 2;
  optional bytes data = 3;
}








DictionaryConfig


	
class messages_pb2.DictionaryConfig

	



Represents a static dictionary.

message DictionaryConfig {
  optional string name = 1;
  repeated DictionaryEntry entry = 2;
  optional int32 total_token_count = 3;
  optional int32 total_items_count = 4;
}






	
DictionaryConfig.name

	A value that defines the name of the dictionary.
The name must be unique across all dictionaries defined in the master component.






	
DictionaryConfig.entry

	A list of all entries of the dictionary.






	
DictionaryConfig.total_token_count

	A sum of DictionaryEntry.token_count across all entries in this dictionary.
The value is optional and might be missing when all entries in the dictionary does not carry
the DictionaryEntry.token_count attribute.






	
DictionaryConfig.total_items_count

	A sum of DictionaryEntry.items_count across all entries in this dictionary.
The value is optional and might be missing when all entries in the dictionary does not carry
the DictionaryEntry.items_count attribute.








DictionaryEntry


	
class messages_pb2.DictionaryEntry

	



Represents one entry in a static dictionary.

message DictionaryEntry {
  optional string key_token = 1;
  optional string class_id = 2;
  optional float value = 3;
  repeated string value_tokens = 4;
  optional FloatArray values = 5;
  optional int32 token_count = 6;
  optional int32 items_count = 7;
}






	
DictionaryEntry.key_token

	A token that defines the key of the entry.






	
DictionaryEntry.class_id

	The class of the DictionaryEntry.key_token.






	
DictionaryEntry.value

	An optional generic value, associated with the entry.
The meaning of this value depends on the usage of the dictionary.






	
DictionaryEntry.token_count

	An optional value, indicating the overall number of token occurrences in some collection.






	
DictionaryEntry.items_count

	An optional value, indicating the overall number of documents containing the token.








ScoreConfig


	
class messages_pb2.ScoreConfig

	



Represents a configuration of a general score.

message ScoreConfig {
  enum Type {
    Perplexity = 0;
    SparsityTheta = 1;
    SparsityPhi = 2;
    ItemsProcessed = 3;
    TopTokens = 4;
    ThetaSnippet = 5;
    TopicKernel = 6;
  }

  optional string name = 1;
  optional Type type = 2;
  optional bytes config = 3;
}






	
ScoreConfig.name

	A value that defines the name of the score.
The name must be unique across all names defined in the master component.






	
ScoreConfig.type

	A value that defines the type of the score.







	Perplexity
	Defines a config of the Perplexity score


	SparsityTheta
	Defines a config of the SparsityTheta score


	SparsityPhi
	Defines a config of the SparsityPhi score


	ItemsProcessed
	Defines a config of the ItemsProcessed score


	TopTokens
	Defines a config of the TopTokens score


	ThetaSnippet
	Defines a config of the ThetaSnippet score


	TopicKernel
	Defines a config of the TopicKernel score










	
ScoreConfig.config

	A serialized protobuf message that describes score config for the specific score type.








ScoreData


	
class messages_pb2.ScoreData

	



Represents a general result of score calculation.

message ScoreData {
  enum Type {
    Perplexity = 0;
    SparsityTheta = 1;
    SparsityPhi = 2;
    ItemsProcessed = 3;
    TopTokens = 4;
    ThetaSnippet = 5;
    TopicKernel = 6;
  }

  optional string name = 1;
  optional Type type = 2;
  optional bytes data = 3;
}






	
ScoreData.name

	A value that describes the name of the score.
This name will match the name of the corresponding score config.






	
ScoreData.type

	A value that defines the type of the score.







	Perplexity
	Defines a Perplexity score data


	SparsityTheta
	Defines a SparsityTheta score data


	SparsityPhi
	Defines a SparsityPhi score data


	ItemsProcessed
	Defines a ItemsProcessed score data


	TopTokens
	Defines a TopTokens score data


	ThetaSnippet
	Defines a ThetaSnippet score data


	TopicKernel
	Defines a TopicKernel score data










	
ScoreData.data

	A serialized protobuf message that provides the specific score result.








PerplexityScoreConfig


	
class messages_pb2.PerplexityScoreConfig

	



Represents a configuration of a perplexity score.

message PerplexityScoreConfig {
  enum Type {
    UnigramDocumentModel = 0;
    UnigramCollectionModel = 1;
  }

  optional string field_name = 1 [default = "@body"];  // obsolete in BigARTM v0.5.8
  optional string stream_name = 2 [default = "@global"];
  optional Type model_type = 3 [default = UnigramDocumentModel];
  optional string dictionary_name = 4;
  optional float theta_sparsity_eps = 5 [default = 1e-37];
  repeated string theta_sparsity_topic_name = 6;
}






	
PerplexityScoreConfig.field_name

	Obsolete in BigARTM v0.5.8






	
PerplexityScoreConfig.stream_name

	A value that defines which stream should be used in perplexity calculation.








PerplexityScore


	
class messages_pb2.PerplexityScore

	



Represents a result of calculation of a perplexity score.

message PerplexityScore {
  optional double value = 1;
  optional double raw = 2;
  optional double normalizer = 3;
  optional int32 zero_words = 4;
  optional double theta_sparsity_value = 5;
  optional int32 theta_sparsity_zero_topics = 6;
  optional int32 theta_sparsity_total_topics = 7;
}






	
PerplexityScore.value

	A perplexity value which is calculated as exp(-raw/normalizer).






	
PerplexityScore.raw

	A numerator of perplexity calculation.
This value is equal to the likelihood of the topic model.






	
PerplexityScore.normalizer

	A denominator of perplexity calculation.
This value is equal to the total number of tokens in all processed items.






	
PerplexityScore.zero_words

	A number of tokens that have zero probability p(w|t,d) in a document.
Such tokens are evaluated based on to unigram document model or unigram colection model.






	
PerplexityScore.theta_sparsity_value

	A fraction of zero entries in the theta matrix.








SparsityThetaScoreConfig


	
class messages_pb2.SparsityThetaScoreConfig

	



Represents a configuration of a theta sparsity score.

message SparsityThetaScoreConfig {
  optional string field_name = 1 [default = "@body"];  // obsolete in BigARTM v0.5.8
  optional string stream_name = 2 [default = "@global"];
  optional float eps = 3 [default = 1e-37];
  repeated string topic_name = 4;
}






	
SparsityThetaScoreConfig.field_name

	Obsolete in BigARTM v0.5.8






	
SparsityThetaScoreConfig.stream_name

	A value that defines which stream should be used in theta sparsity calculation.






	
SparsityThetaScoreConfig.eps

	A small value that defines zero threshold for theta probabilities.
Theta values below the threshold will be counted as zeros when calculating theta sparsity score.






	
SparsityThetaScoreConfig.topic_name

	A set of topic names that defines which topics should be used for score calculation.
The names correspond to ModelConfig.topic_name.
This value is optional, use an empty list to calculate the score for all topics.








SparsityThetaScore


	
class messages_pb2.SparsityThetaScoreConfig

	



Represents a result of calculation of a theta sparsity score.

message SparsityThetaScore {
  optional double value = 1;
  optional int32 zero_topics = 2;
  optional int32 total_topics = 3;
}






	
SparsityThetaScore.value

	A value of theta sparsity that is calculated as zero_topics / total_topics.






	
SparsityThetaScore.zero_topics

	A numerator of theta sparsity score.
A number of topics that have zero probability in a topic-item distribution.






	
SparsityThetaScore.total_topics

	A denominator of theta sparsity score.
A total number of topics in a topic-item distributions that are used in theta sparsity calculation.








SparsityPhiScoreConfig


	
class messages_pb2.SparsityPhiScoreConfig

	



Represents a configuration of a sparsity phi score.

message SparsityPhiScoreConfig {
  optional float eps = 1 [default = 1e-37];
  optional string class_id = 2;
  repeated string topic_name = 3;
}






	
SparsityPhiScoreConfig.eps

	A small value that defines zero threshold for phi probabilities.
Phi values below the threshold will be counted as zeros when calculating phi sparsity score.






	
SparsityPhiScoreConfig.class_id

	A value that defines the class of tokens to use for score calculation.
This value corresponds to ModelConfig.class_id field.
This value is optional. By default the score will be calculated for
the default class ('@default_class‘).






	
SparsityPhiScoreConfig.topic_name

	A set of topic names that defines which topics should be used for score calculation.
This value is optional, use an empty list to calculate the score for all topics.








SparsityPhiScore


	
class messages_pb2.SparsityPhiScore

	



Represents a result of calculation of a phi sparsity score.

message SparsityPhiScore {
  optional double value = 1;
  optional int32 zero_tokens = 2;
  optional int32 total_tokens = 3;
}






	
SparsityPhiScore.value

	A value of phi sparsity that is calculated as zero_tokens / total_tokens.






	
SparsityPhiScore.zero_tokens

	A numerator of phi sparsity score.
A number of tokens that have zero probability in a token-topic distribution.






	
SparsityPhiScore.total_tokens

	A denominator of phi sparsity score.
A total number of tokens in a token-topic distributions that are used in phi sparsity calculation.








ItemsProcessedScoreConfig


	
class messages_pb2.ItemsProcessedScoreConfig

	



Represents a configuration of an items processed score.

message ItemsProcessedScoreConfig {
  optional string field_name = 1 [default = "@body"];  // obsolete in BigARTM v0.5.8
  optional string stream_name = 2 [default = "@global"];
}






	
ItemsProcessedScoreConfig.field_name

	Obsolete in BigARTM v0.5.8






	
ItemsProcessedScoreConfig.stream_name

	A value that defines which stream should be used in calculation of processed items.








ItemsProcessedScore


	
class messages_pb2.ItemsProcessedScore

	



Represents a result of calculation of an items processed score.

message ItemsProcessedScore {
  optional int32 value = 1;
}






	
ItemsProcessedScore.value

	A number of items that belong to the stream ItemsProcessedScoreConfig.stream_name
and have been processed during iterations.
Currently this number is aggregated throughout all iterations.








TopTokensScoreConfig


	
class messages_pb2.TopTokensScoreConfig

	



Represents a configuration of a top tokens score.

message TopTokensScoreConfig {
  optional int32 num_tokens = 1 [default = 10];
  optional string class_id = 2;
  repeated string topic_name = 3;
}






	
TopTokensScoreConfig.num_tokens

	A value that defines how many top tokens should be retrieved for each topic.






	
TopTokensScoreConfig.class_id

	A value that defines for which class of the model to collect top tokens.
This value corresponds to ModelConfig.class_id field.

This parameter is optional. By default tokens will be retrieved for
the default class ('@default_class‘).






	
TopTokensScoreConfig.topic_name

	A set of values that represent the names of the topics to include in the result.
The names correspond to ModelConfig.topic_name.

This parameter is optional. By default top tokens will be calculated for all topics in the model.








TopTokensScore


	
class messages_pb2.TopTokensScore

	



Represents a result of calculation of a top tokens score.

message TopTokensScore {
  optional int32 num_entries = 1;
  repeated string topic_name = 2;
  repeated int32 topic_index = 3;
  repeated string token = 4;
  repeated float weight = 5;
}





The data in this score is represented in a table-like format.
sorted on topic_index.
The following code block gives a typical usage example.
The loop below is guarantied to process all top-N tokens for the first topic,
then for the second topic, etc.

for (int i = 0; i < top_tokens_score.num_entries(); i++) {
  // Gives a index from 0 to (model_config.topics_size() - 1)
  int topic_index = top_tokens_score.topic_index(i);

  // Gives one of the topN tokens for topic 'topic_index'
  std::string token = top_tokens_score.token(i);

  // Gives the weight of the token
  float weight = top_tokens_score.weight(i);
}






	
TopTokensScore.num_entries

	A value indicating the overall number of entries in the score.
All the remaining repeated fiels in this score will have this length.






	
TopTokensScore.token

	A repeated field of num_entries elements,
containing tokens with high probability.






	
TopTokensScore.weight

	A repeated field of num_entries elements,
containing the p(t|w) probabilities.






	
TopTokensScore.topic_index

	A repeated field of num_entries elements,
containing integers between 0 and (ModelConfig.topics_count - 1).






	
TopTokensScore.topic_name

	A repeated field of num_entries elements,
corresponding to the values of ModelConfig.topic_name field.








ThetaSnippetScoreConfig


	
class messages_pb2.ThetaSnippetScoreConfig

	



Represents a configuration of a theta snippet score.

message ThetaSnippetScoreConfig {
  optional string field_name = 1 [default = "@body"];  // obsolete in BigARTM v0.5.8
  optional string stream_name = 2 [default = "@global"];
  repeated int32 item_id = 3 [packed = true];  // obsolete in BigARTM v0.5.8
  optional int32 item_count = 4 [default = 10];
}






	
ThetaSnippetScoreConfig.field_name

	Obsolete in BigARTM v0.5.8






	
ThetaSnippetScoreConfig.stream_name

	A value that defines which stream should be used in calculation of a theta snippet.






	
ThetaSnippetScoreConfig.item_id

	Obsolete in BigARTM v0.5.8.






	
ThetaSnippetScoreConfig.item_count

	The number of items to retrieve. ThetaSnippetScore will select last item_count processed items
and return their theta vectors.








ThetaSnippetScore


	
class messages_pb2.ThetaSnippetScore

	



Represents a result of calculation of a theta snippet score.

message ThetaSnippetScore {
  repeated int32 item_id = 1;
  repeated FloatArray values = 2;
}






	
ThetaSnippetScore.item_id

	A set of item ids for which theta snippet have been calculated.
Items are identified by the item id.






	
ThetaSnippetScore.values

	A set of values that define topic probabilities for each item.
The length of these repeated values will match the number of item ids
specified in ThetaSnippetScore.item_id.
Each repeated field contains float array of topic probabilities in the natural order of topic ids.








TopicKernelScoreConfig


	
class messages_pb2.TopicKernelScoreConfig

	



Represents a configuration of a topic kernel score.

message TopicKernelScoreConfig {
  optional float eps = 1 [default = 1e-37];
  optional string class_id = 2;
  repeated string topic_name = 3;
  optional double probability_mass_threshold = 4 [default = 0.1];
}






	Kernel of a topic model is defined as the list of all tokens such that
the probability p(t | w) exceeds probability mass threshold.

	Kernel size of a topic t is defined as the number of tokens in its kernel.

	Topic purity of a topic t is defined as the sum of p(w | t)
across all tokens w in the kernel.

	Topic contrast of a topic t is defined as the sum of p(t | w)
across all tokens w in the kernel defided by the size of the kernel.




	
TopicKernelScoreConfig.eps

	Defines the minimum threshold on kernel size.
In most cases this parameter should be kept at the default value.






	
TopicKernelScoreConfig.class_id

	A value that defines the class of tokens to use for score calculation.
This value corresponds to ModelConfig.class_id field.
This value is optional. By default the score will be calculated for
the default class ('@default_class‘).






	
TopicKernelScoreConfig.topic_name

	A set of topic names that defines which topics should be used for score calculation.
This value is optional, use an empty list to calculate the score for all topics.






	
TopicKernelScoreConfig.probability_mass_threshold

	Defines the probability mass threshold (see the definition of kernel above).








TopicKernelScore


	
class messages_pb2.TopicKernelScore

	



Represents a result of calculation of a topic kernel score.

message TopicKernelScore {
  optional DoubleArray kernel_size = 1;
  optional DoubleArray kernel_purity = 2;
  optional DoubleArray kernel_contrast = 3;
  optional double average_kernel_size = 4;
  optional double average_kernel_purity = 5;
  optional double average_kernel_contrast = 6;
}






	
TopicKernelScore.kernel_size

	Provides the kernel size for all requested topics.
The length of this DoubleArray is always equal to the overall number of topics.
The values of -1 correspond to non-calculated topics.
The remaining values carry the kernel size of the requested topics.






	
TopicKernelScore.kernel_purity

	Provides the kernel purity for all requested topics.
The length of this DoubleArray is always equal to the overall number of topics.
The values of -1 correspond to non-calculated topics.
The remaining values carry the kernel size of the requested topics.






	
TopicKernelScore.kernel_contrast

	Provides the kernel contrast for all requested topics.
The length of this DoubleArray is always equal to the overall number of topics.
The values of -1 correspond to non-calculated topics.
The remaining values carry the kernel contrast of the requested topics.






	
TopicKernelScore.average_kernel_size

	Provides the average kernel size across all the requested topics.






	
TopicKernelScore.average_kernel_purity

	Provides the average kernel purity across all the requested topics.






	
TopicKernelScore.average_kernel_contrast

	Provides the average kernel contrast across all the requested topics.








TopicModel


	
class messages_pb2.TopicModel

	



Represents a topic model.
This message can contain data in either dense or sparse format.
The key idea behind sparse format is to avoid storing zero p(w|t)
elements of the Phi matrix.
Please refer to the description of TopicModel.topic_index field for more details.

To distinguish between these two formats
check whether repeated field TopicModel.topic_index is empty.
An empty field indicate a dense format,
otherwise the message contains data in a sparse format.
To request topic model in a sparse format set
GetTopicModelArgs.use_sparse_format field to True
when calling ArtmRequestTopicModel().

message TopicModel {
  enum OperationType {
    Initialize = 0;
    Increment = 1;
    Overwrite = 2;
    Remove = 3;
    Ignore = 4;
  }

  optional string name = 1 [default = "@model"];
  optional int32 topics_count = 2;
  repeated string topic_name = 3;
  repeated string token = 4;
  repeated FloatArray token_weights = 5;
  repeated string class_id = 6;

  message TopicModelInternals {
    repeated FloatArray n_wt = 1;
    repeated FloatArray r_wt = 2;
  }

  optional bytes internals = 7;  // obsolete in BigARTM v0.6.3
  repeated IntArray topic_index = 8;
  repeated OperationType operation_type = 9;
}






	
TopicModel.name

	A value that describes the name of the topic model (TopicModel.name).






	
TopicModel.topics_count

	A value that describes the number of topics in this message.






	
TopicModel.topic_name

	A value that describes the names of the topics included in given TopicModel message.
This values will represent a subset of topics, defined by GetTopicModelArgs.topic_name message.
In case of empty GetTopicModelArgs.topic_name this values will correspond to the entire
set of topics, defined in ModelConfig.topic_name field.






	
TopicModel.token

	The set of all tokens, included in the topic model.






	
TopicModel.token_weights

	A set of token weights.
The length of this repeated field will match the length of the repeated field TopicModel.token.
The length of each FloatArray will match the TopicModel.topics_count field (in dense representation),
or the length of the corresponding IntArray from TopicModel.topic_index field (in sparse representation).






	
TopicModel.class_id

	A set values that specify the class (modality) of the tokens.
The length of this repeated field will match the length of the repeated field TopicModel.token.






	
TopicModel.internals

	Obsolete in BigARTM v0.6.3.






	
TopicModel.topic_index

	A repeated field used for sparse topic model representation.
This field has the same length as
TopicModel.token, TopicModel.class_id and TopicModel.token_weights.
Each element in topic_index is an instance of IntArray message,
containing a list of values between 0 and the length of TopicModel.topic_name field.
This values correspond to the indices in TopicModel.topic_name array,
and tell which topics has non-zero p(w|t) probabilities for a given token.
The actual p(w|t) values can be found in TopicModel.token_weights field.
The length of each IntArray message in TopicModel.topic_index field
equals to the length of the corresponding
FloatArray message in TopicModel.token_weights field.


Warning

Be careful with TopicModel.topic_index when this message
represents a subset of topics, defined by GetTopicModelArgs.topic_name.
In this case indices correspond to the selected subset of topics,
which might not correspond to topic indices in the original ModelConfig message.








	
TopicModel.operation_type

	A set of values that define operation to perform on each token
when topic model is used as an argument of ArtmOverwriteTopicModel().







	Initialize
	Indicates that a new token should be added to the
topic model. Initial n_wt counter will be initialized
with random value from [0, 1] range.
TopicModel.token_weights is ignored.
This operation is ignored if token already exists.


	Increment
	Indicates that n_wt counter of the token should be
increased by values, specified in
TopicModel.token_weights field.
A new token will be created if it does not exist yet.


	Overwrite
	Indicates that n_wt counter of the token should be
set to the value, specified in
TopicModel.token_weights field.
A new token will be created if it does not exist yet.


	Remove
	Indicates that the token should be removed from the
topic model.
TopicModel.token_weights is ignored.


	Ignore
	Indicates no operation for the token.
The effect is the same as if
the token is not present in this message.












ThetaMatrix


	
class messages_pb2.ThetaMatrix

	



Represents a theta matrix.
This message can contain data in either dense or sparse format.
The key idea behind sparse format is to avoid storing zero p(t|d)
elements of the Theta matrix.
Sparse representation of Theta matrix is equivalent to sparse representation
of Phi matrix. Please, refer to TopicModel for detailed description of the sparse format.

message ThetaMatrix {
  optional string model_name = 1 [default = "@model"];
  repeated int32 item_id = 2;
  repeated FloatArray item_weights = 3;
  repeated string topic_name = 4;
  optional int32 topics_count = 5;
  repeated string item_title = 6;
  repeated IntArray topic_index = 7;
}






	
ThetaMatrix.model_name

	A value that describes the name of the topic model.
This name will match the name of the corresponding model config.






	
ThetaMatrix.item_id

	A set of item IDs corresponding to Item.id values.






	
ThetaMatrix.item_weights

	A set of item ID weights.
The length of this repeated field will match the length of the repeated field ThetaMatrix.item_id.
The length of each FloatArray will match the ThetaMatrix.topics_count field (in dense representation),
or the length of the corresponding IntArray from ThetaMatrix.topic_index field (in sparse representation).






	
ThetaMatrix.topic_name

	A value that describes the names of the topics included in given ThetaMatrix message.
This values will represent a subset of topics, defined by GetThetaMatrixArgs.topic_name message.
In case of empty GetTopicModelArgs.topic_name this values will correspond to the entire
set of topics, defined in ModelConfig.topic_name field.






	
ThetaMatrix.topics_count

	A value that describes the number of topics in this message.






	
ThetaMatrix.item_title

	A set of item titles, corresponding to Item.title values.
Beware that this field might be empty (e.g. of zero length)
if all items did not have title specified in Item.title.






	
ThetaMatrix.topic_index

	A repeated field used for sparse theta matrix representation.
This field has the same length as
ThetaMatrix.item_id, ThetaMatrix.item_weights and ThetaMatrix.item_title.
Each element in topic_index is an instance of IntArray message,
containing a list of values between 0 and the length of TopicModel.topic_name field.
This values correspond to the indices in ThetaMatrix.topic_name array,
and tell which topics has non-zero p(t|d) probabilities for a given item.
The actual p(t|d) values can be found in ThetaMatrix.item_weights field.
The length of each IntArray message in ThetaMatrix.topic_index field
equals to the length of the corresponding
FloatArray message in ThetaMatrix.item_weights field.


Warning

Be careful with ThetaMatrix.topic_index when this message
represents a subset of topics, defined by GetThetaMatrixArgs.topic_name.
In this case indices correspond to the selected subset of topics,
which might not correspond to topic indices in the original ModelConfig message.










CollectionParserConfig


	
class messages_pb2.CollectionParserConfig

	



Represents a configuration of a collection parser.

message CollectionParserConfig {
  enum Format {
    BagOfWordsUci = 0;
    MatrixMarket = 1;
  }

  optional Format format = 1 [default = BagOfWordsUci];
  optional string docword_file_path = 2;
  optional string vocab_file_path = 3;
  optional string target_folder = 4;
  optional string dictionary_file_name = 5;
  optional int32 num_items_per_batch = 6 [default = 1000];
  optional string cooccurrence_file_name = 7;
  repeated string cooccurrence_token = 8;
  optional bool use_unity_based_indices = 9 [default = true];
}






	
CollectionParserConfig.format

	A value that defines the format of a collection to be parsed.







	BagOfWordsUci
	
A bag-of-words collection, stored in UCI format.

UCI format must have two files - vocab.*.txt

and docword.*.txt, defined by

docword_file_path

and vocab_file_path.

The format of the docword.*.txt file is 3 header

lines, followed by NNZ triples:



D
W
NNZ
docID wordID count
docID wordID count
...
docID wordID count






The file must be sorted on docID.

Values of wordID must be unity-based (not zero-based).

The format of the vocab.*.txt file is line containing wordID=n.

Note that words must not have spaces or tabs.

In vocab.*.txt file it is also possible to specify

Batch.class_id for tokens, as it is shown in this example:



token1 @default_class
token2 custom_class
token3 @default_class
token4






Use space or tab to separate token from its class.

Token that are not followed by class label automatically

get ''@default_class‘’ as a lable (see ‘’token4’’ in the example).






	MatrixMarket
	
See the description at http://math.nist.gov/MatrixMarket/formats.html

In this mode parameter docword_file_path must refer to a file

in Matrix Market format. Parameter vocab_file_path

is also required and must refer to a dictionary file exported in

gensim [http://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.save_as_text] format (dictionary.save_as_text()).














	
CollectionParserConfig.docword_file_path

	A value that defines the disk location of a docword.*.txt file
(the bag of words file in sparse format).






	
CollectionParserConfig.vocab_file_path

	A value that defines the disk location of a vocab.*.txt file
(the file with the vocabulary of the collection).






	
CollectionParserConfig.target_folder

	A value that defines the disk location where to stores all the results after parsing the colleciton.
Usually the resulting location will contain a set of batches,
and a DictionaryConfig that contains all unique tokens occured in the collection.
Such location can be further passed MasterComponent via MasterComponentConfig.disk_path.






	
CollectionParserConfig.dictionary_file_name

	A file name where to save the DictionaryConfig message
that contains all unique tokens occured in the collection.
The file will be created in target_folder.

This parameter is optional. The dictionary will be still collected even when this parameter is
not provided, but the resulting dictionary will be only returned as the result of
ArtmRequestParseCollection, but it will not be stored to disk.

In the resulting dictionary each entry will have the following fields:


	DictionaryEntry.key_token - the textual representation of the token,

	DictionaryEntry.class_id - the label of the default class (“@DefaultClass”),

	DictionaryEntry.token_count - the overall number of occurrences of the token in the collection,

	DictionaryEntry.items_count - the number of documents in the collection, containing the token.

	DictionaryEntry.value - the ratio between token_count
and total_token_count.



Use ArtmRequestLoadDictionary method to load the resulting dictionary.






	
CollectionParserConfig.num_items_per_batch

	A value indicating the desired number of items per batch.






	
CollectionParserConfig.cooccurrence_file_name

	A file name where to save the DictionaryConfig message
that contains information about co-occurrence of all pairs of tokens in the collection.
The file will be created in target_folder.

This parameter is optional. No cooccurrence information will be collected if the filename is not provided.

In the resulting dictionary each entry will correspond to two tokens (‘<first>’ and ‘<second>’),
and carry the information about co-occurrence of this tokens in the collection.


	DictionaryEntry.key_token - a string of the form ‘<first>~<second>’,
produced by concatenation of two tokens together via the tilde symbol (‘~’).
<first> tokens is guarantied lexicographic less than the <second> token.

	DictionaryEntry.class_id - the label of the default class (“@DefaultClass”).

	DictionaryEntry.items_count - the number of documents in the collection,
containing both tokens (‘<first>’ and ‘<second>’)



Use ArtmRequestLoadDictionary method to load the resulting dictionary.






	
CollectionParserConfig.cooccurrence_token

	A list of tokens to collect cooccurrence information.
A cooccurrence of the pair <first>~<second> will be collected only when both tokens are present in
CollectionParserConfig.cooccurrence_token.






	
CollectionParserConfig.use_unity_based_indices

	A flag indicating whether to interpret indices in docword file as unity-based or as zero-based.
By default ‘use_unity_based_indices = True`, as required by UCI bag-of-words format.








SynchronizeModelArgs


	
class messages_pb2.SynchronizeModelArgs

	



Represents an argument of synchronize model operation.

message SynchronizeModelArgs {
  optional string model_name = 1;
  optional float decay_weight = 2 [default = 0.0];
  optional bool invoke_regularizers = 3 [default = true];
  optional float apply_weight = 4 [default = 1.0];
}






	
SynchronizeModelArgs.model_name

	The name of the model to be synchronized.
This value is optional. When not set, all models will be synchronized with the same decay weight.






	
SynchronizeModelArgs.decay_weight

	The decay weight and apply_weight define how to combine existing topic model with all increments,
calculated since the last ArtmSynchronizeModel().
This is best described by the following formula:

n_wt_new = n_wt_old * decay_weight + n_wt_inc * apply_weight,

where
n_wt_old describe current topic model,
n_wt_inc describe increment calculated since last ArtmSynchronizeModel(),
n_wt_new define the resulting topic model.

Expected values of both parameters are between 0.0 and 1.0. Here are some examples:


	Combination of decay_weight=0.0 and apply_weight=1.0 states that the previous Phi matrix of the topic model will be disregarded completely,
and the new Phi matrix will be formed based on new increments gathered since last model synchronize.

	Combination of decay_weight=1.0 and apply_weight=1.0 states that new increments will be appended to the current Phi matrix without any decay.

	Combination of decay_weight=1.0 and apply_weight=0.0 states that new increments will be disregarded, and current Phi matrix will stay unchanged.

	To reproduce Online variational Bayes for LDA algorighm by Matthew D. Hoffman set
decay_weight = 1 - rho and apply_weight = rho, where parameter rho is defined as rho = exp(tau + t, -kappa).
See Online Learning for Latent Dirichlet Allocation [https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf] for further details.








	
SynchronizeModelArgs.apply_weight

	See decay_weight for the description.






	
SynchronizeModelArgs.invoke_regularizers

	A flag indicating whether to invoke all phi-regularizers.








InitializeModelArgs


	
class messages_pb2.InitializeModelArgs

	



Represents an argument of ArtmInitializeModel() operation.
Please refer to
example14_initialize_topic_model.py [https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example14_initialize_topic_model.py]
for further information.

message InitializeModelArgs {
  enum SourceType {
    Dictionary = 0;
    Batches = 1;
  }

  message Filter {
    optional string class_id = 1;
    optional float min_percentage = 2;
    optional float max_percentage = 3;
    optional int32 min_items = 4;
    optional int32 max_items = 5;
    optional int32 min_total_count = 6;
    optional int32 min_one_item_count = 7;
  }

  optional string model_name = 1;
  optional string dictionary_name = 2;
  optional SourceType source_type = 3 [default = Dictionary];

  optional string disk_path = 4;
  repeated Filter filter = 5;
}






	
InitializeModelArgs.model_name

	The name of the model to be initialized.






	
InitializeModelArgs.dictionary_name

	The name of the dictionary containing all tokens that should be initialized.








GetTopicModelArgs

Represents an argument of ArtmRequestTopicModel() operation.

message GetTopicModelArgs {
  enum RequestType {
    Pwt = 0;
    Nwt = 1;
  }

  optional string model_name = 1;
  repeated string topic_name = 2;
  repeated string token = 3;
  repeated string class_id = 4;
  optional bool use_sparse_format = 5;
  optional float eps = 6 [default = 1e-37];
  optional RequestType request_type = 7 [default = Pwt];
}






	
GetTopicModelArgs.model_name

	The name of the model to be retrieved.






	
GetTopicModelArgs.topic_name

	The list of topic names to be retrieved.
This value is optional. When not provided, all topics will be retrieved.






	
GetTopicModelArgs.token

	The list of tokens to be retrieved.
The length of this field must match the length of class_id field.
This field is optional. When not provided, all tokens will be retrieved.






	
GetTopicModelArgs.class_id

	The list of classes corresponding to all tokens.
The length of this field must match the length of token field.
This field is only required together with token, otherwise it is ignored.






	
GetTopicModelArgs.use_sparse_format

	An optional flag that defines whether to use sparse format for the resulting TopicModel message.
See TopicModel message for additional information about the sparse format.
Note that setting use_sparse_format = true results in empty TopicModel.internals field.






	
GetTopicModelArgs.eps

	A small value that defines zero threshold for p(w|t) probabilities.
This field is only used in sparse format.
p(w|t) below the threshold will be excluded from the resulting Phi matrix.






	
GetTopicModelArgs.request_type

	An optional value that defines what kind of data to retrieve in this operation.







	Pwt
	Indicates that the resulting TopicModel message
should contain p(w|t) probabilities.
This values are normalized to form a probability distribution
(sum_w p(w|t) = 1 for all topics t).


	Nwt
	Indicates that the resulting TopicModel message
should contain internal n_wt counters of the topic model.
This values represent an internal state of the topic model.





Default setting is to retrieve p(w|t) probabilities.
This probabilities are sufficient to infer p(t|d) distributions
using this topic model.

n_wt counters allow you to restore the precise state of the topic model.
By passing this values in ArtmOverwriteTopicModel() operation
you are guarantied to get the model in the same state as you retrieved it.
As the result you may continue topic model inference from the point
you have stopped it last time.

p(w|t) values can be also restored via c:func:ArtmOverwriteTopicModel
operation. The resulting model will give the same p(t|d) distributions,
however you should consider this model as read-only, and do not call
ArtmSynchronizeModel() on it.








GetThetaMatrixArgs

Represents an argument of ArtmRequestThetaMatrix() operation.

message GetThetaMatrixArgs {
  optional string model_name = 1;
  optional Batch batch = 2;
  repeated string topic_name = 3;
  repeated int32 topic_index = 4;
  optional bool clean_cache = 5 [default = false];
  optional bool use_sparse_format = 6 [default = false];
  optional float eps = 7 [default = 1e-37];
}






	
GetThetaMatrixArgs.model_name

	The name of the model to retrieved theta matrix for.






	
GetThetaMatrixArgs.batch

	The Batch to classify with the model.






	
GetThetaMatrixArgs.topic_name

	The list of topic names, describing which topics to include in the Theta matrix.
The values of this field should correspond to values in ModelConfig.topic_name.
This field is optional, by default all topics will be included.






	
GetThetaMatrixArgs.topic_index

	The list of topic indices, describing which topics to include in the Theta matrix.
The values of this field should be an integers between 0 and (ModelConfig.topics_count - 1).
This field is optional, by default all topics will be included.

Note that this field acts similar to GetThetaMatrixArgs.topic_name.
It is not allowed to specify both topic_index and topic_name at the same time.
The recommendation is to use topic_name.






	
GetThetaMatrixArgs.clean_cache

	An optional flag that defines whether to clear the theta matrix cache after this operation.
Setting this value to True will clear the cache for a topic model, defined by GetThetaMatrixArgs.model_name.
This value is only applicable when MasterComponentConfig.cache_theta is set to True.






	
GetThetaMatrixArgs.use_sparse_format

	An optional flag that defines whether to use sparse format for the resulting ThetaMatrix message.
See ThetaMatrix message for additional information about the sparse format.






	
GetThetaMatrixArgs.eps

	A small value that defines zero threshold for p(t|d) probabilities.
This field is only used in sparse format.
p(t|d) below the threshold will be excluded from the resulting Theta matrix.








GetScoreValueArgs

Represents an argument of get score operation.

message GetScoreValueArgs {
  optional string model_name = 1;
  optional string score_name = 2;
  optional Batch batch = 3;
}






	
GetScoreValueArgs.model_name

	The name of the model to retrieved score for.






	
GetScoreValueArgs.score_name

	The name of the score to retrieved.






	
GetScoreValueArgs.batch

	The Batch to calculate the score.
This option is only applicable to cumulative scores.
When not provided the score will be reported for all batches processed since last ArtmInvokeIteration().








AddBatchArgs

Represents an argument of ArtmAddBatch() operation.

message AddBatchArgs {
  optional Batch batch = 1;
  optional int32 timeout_milliseconds = 2 [default = -1];
  optional bool reset_scores = 3 [default = false];
  optional string batch_file_name = 4;
}






	
AddBatchArgs.batch

	The Batch to add.






	
AddBatchArgs.timeout_milliseconds

	Timeout in milliseconds for this operation.






	
AddBatchArgs.reset_scores

	An optional flag that defines whether to reset all scores before this operation.






	
AddBatchArgs.batch_file_name

	An optional value that defines disk location of the batch to add.
You must choose between parameters batch_file_name or batch
(either of them has to be specified, but not both at the same time).








InvokeIterationArgs

Represents an argument of ArtmInvokeIteration() operation.

message InvokeIterationArgs {
  optional int32 iterations_count = 1 [default = 1];
  optional bool reset_scores = 2 [default = true];
  optional string disk_path = 3;
}






	
InvokeIterationArgs.iterations_count

	An integer value describing how many iterations to invoke.






	
InvokeIterationArgs.reset_scores

	An optional flag that defines whether to reset all scores before this operation.






	
InvokeIterationArgs.disk_path

	A value that defines the disk location with batches to process on this iteration.








WaitIdleArgs

Represents an argument of ArtmWaitIdle() operation.

message WaitIdleArgs {
  optional int32 timeout_milliseconds = 1 [default = -1];
}






	
WaitIdleArgs.timeout_milliseconds

	Timeout in milliseconds for this operation.








ExportModelArgs

Represents an argument of ArtmExportModel() operation.

message ExportModelArgs {
  optional string file_name = 1;
  optional string model_name = 2;
}






	
ExportModelArgs.file_name

	A target file name where to store topic model.






	
ExportModelArgs.model_name

	A value that describes the name of the topic model.
This name will match the name of the corresponding model config.








ImportModelArgs

Represents an argument of ArtmImportModel() operation.

message ImportModelArgs {
  optional string file_name = 1;
  optional string model_name = 2;
}






	
ImportModelArgs.file_name

	A target file name from where to load topic model.






	
ImportModelArgs.model_name

	A value that describes the name of the topic model.
This name will match the name of the corresponding model config.











          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Plain C interface of BigARTM
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
Plain C interface of BigARTM

This document explains all public methods of the low level BigARTM interface.


Introduction

The goal of low level BigARTM interface is to expose all functionality of the library
in a set of simple functions written in good old plain C language.
This makes it easier to consume BigARTM from various programming environments.
For example, the python_interface of BigARTM uses ctypes [https://docs.python.org/2/library/ctypes.html]
module to call the low level BigARTM interface.
Most programming environments also have similar functionality:
PInvoke [http://msdn.microsoft.com/en-us/library/aa288468(v=vs.71).aspx] in C#,
loadlibrary [http://www.mathworks.se/help/matlab/matlab_external/calling-functions-in-shared-libraries.html] in Matlab,
etc.

Note that most methods in this API accept a serialized binary representation of some Google Protocol Buffer message.
Please, refer to Messages for more details about each particular message.

All methods in this API return an integer value.
Negative return values represent an error code.
See error codes for the list of all error codes.
To get corresponding error message as string use ArtmGetLastErrorMessage().
Non-negative return values represent a success, and for some API methods
might also incorporate some useful information.
For example, ArtmCreateMasterComponent() returns the ID of newly created master component,
and ArtmRequestTopicModel() returns the length of the buffer that should be allocated before
calling ArtmCopyRequestedMessage().




ArtmCreateMasterComponent


	
int ArtmCreateMasterComponent(intlength, const char*master_component_config)

	Creates a master component.





	Parameters:	
	master_component_config (const_char*) – Serialized MasterComponentConfig message,
describing the configuration of the master component.

	length (int) – The length in bytes of the master_component_config message.






	Returns:	In case of success, a non-negative ID of the master component,
otherwise one of the error codes.







The ID, returned by this operation, is required by most methods in this API.
Several master components may coexist in the same process.
In such case any two master components with different IDs can not share any common data,
and thus they are completely independent from each other.








ArtmReconfigureMasterComponent


	
int ArtmReconfigureMasterComponent(intmaster_id, intlength, const char*master_component_config)

	Changes the configuration of the master component.





	Parameters:	
	master_id (int) – The ID of a master component
returned by ArtmCreateMasterComponent() method.

	master_component_config (const_char*) – Serialized MasterComponentConfig message,
describing the new configuration of the master component.

	length (int) – The length in bytes of the master_component_config message.






	Returns:	A zero value if operation succeeded, otherwise one of the error codes.














ArtmDisposeMasterComponent


	
int ArtmDisposeMasterComponent(intmaster_id)

	Disposes master component together with all its models, regularizers and dictionaries.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.






	Returns:	This operation always returns ARTM_SUCCESS.







This operation releases memory and other unmanaged resources, used by the master component.

After this operation the master_id value becames invalid and must not be used in other operations.








ArtmCreateModel


	
int ArtmCreateModel(intmaster_id, intlength, const char*model_config)

	Defines a new topic model.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	model_config (const_char*) – Serialized ModelConfig message,
describing the configuration of the topic model.

	length (int) – The length in bytes of the model_config message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.







Note that this method only defines the configuration a topic model,
but does not tune it. Use ArtmInvokeIteration() method
to process the collection of textual documents, and then ArtmRequestTopicModel()
to retrieve the resulting topic model.

It is important to notice that model_config must have a unique value in the ModelConfig.name field,
that can be further used to identify the model (for example in ArtmRequestTopicModel() call).








ArtmReconfigureModel


	
int ArtmReconfigureModel(intmaster_id, intlength, const char*model_config)

	Updates the configuration of topic model.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	model_config (const_char*) – Serialized ModelConfig message,
describing the new configuration of the topic model.

	length (int) – The length in bytes of the model_config message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmDisposeModel


	
int ArtmDisposeModel(intmaster_id, const char*model_name)

	Explicitly delete a specific topic model.
All regularizers within specific master component are also deleted automatically by ArtmDisposeMasterComponent().

After ArtmDisposeModel() the model_name became invalid and shell not be used in
ArtmRequestScore(), ArtmRequestTopicModel(), ArtmRequestThetaMatrix()
or any other method (or protobuf message) that require model_name.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	model_name (const_char*) – A string identified of the model that should be deleted.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmCreateRegularizer


	
int ArtmCreateRegularizer(intmaster_id, intlength, const char*regularizer_config)

	Creates a new regularizer.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	regularizer_config (const_char*) – Serialized RegularizerConfig message,
describing the configuration of a new regularizer.

	length (int) – The length in bytes of the regularizer_config message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.







This operation only creates the regularizer so that it can be used by topic models.
To actually apply the regularizer you should include its name in
ModelConfig.regularizer_name list of a model config.








ArtmReconfigureRegularizer


	
int ArtmReconfigureRegularizer(intmaster_id, intlength, const char*regularizer_config)

	Updates the configuration of the regularizer.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	regularizer_config (const_char*) – Serialized RegularizerConfig message,
describing the configuration of a new regularizer.

	length (int) – The length in bytes of the regularizer_config message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmDisposeRegularizer


	
int ArtmDisposeRegularizer(intmaster_id, const char*regularizer_name)

	Explicitly delete a specific regularizer.
All regularizers within specific master component are also deleted automatically by ArtmDisposeMasterComponent().





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	regularizer_name (const_char*) – A string identified of the regularizer that should be deleted.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmCreateDictionary


	
int ArtmCreateDictionary(intmaster_id, intlength, const char*dictionary_config)

	Creates a new dictionary.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	dictionary_config (const_char*) – Serialized DictionaryConfig message,
describing the configuration of a new dictionary.

	length (int) – The length in bytes of the dictionary_config message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmReconfigureDictionary


	
int ArtmReconfigureDictionary(intmaster_id, intlength, const char*dictionary_config)

	Updates the dictionary.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	dictionary_config (const_char*) – Serialized DictionaryConfig message,
describing the new configuration of the dictionary.

	length (int) – The length in bytes of the dictionary_config message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmDisposeDictionary


	
int ArtmDisposeDictionary(intmaster_id, const char*dictionary_name)

	Explicitly delete a specific dictionary.
All dictionaries within specific master component are also deleted automatically by ArtmDisposeMasterComponent().





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	dictionary_name (const_char*) – A string identified of the dictionary that should be deleted.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmAddBatch


	
int ArtmAddBatch(intmaster_id, intlength, const char*add_batch_args)

	Adds batch for processing.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	add_batch_args (const_char*) – Serialized AddBatchArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the add_batch_args message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmInvokeIteration


	
int ArtmInvokeIteration(intmaster_id, intlength, const char*invoke_iteration_args)

	Invokes several iterations over the collection.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	char* invoke_iteration_args (const) – Serialized InvokeIterationArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the invoke_iteration_args message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmSynchronizeModel


	
int ArtmSynchronizeModel(intmaster_id, intlength, const char*sync_model_args)

	Synchronizes topic model.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	sync_model_args (const_char*) – Serialized SynchronizeModelArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the sync_model_args message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.







This operation updates the Phi matrix of the topic model with all model increments, collected
since last call to ArtmSynchronizeModel. In addition, this operation invokes
all Phi-regularizers for the requested topic model.








ArtmInitializeModel


	
int ArtmInitializeModel(intmaster_id, intlength, const char*init_model_args)

	Initializes the phi matrix of a topic model with some random initial approximation.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	init_model_args (const_char*) – Serialized InitializeModelArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the init_model_args message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmExportModel


	
int ArtmExportModel(intmaster_id, intlength, const char*export_model_args)

	Exports phi matrix into a file.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	export_model_args (const_char*) – Serialized ExportModelArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the export_model_args message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmImportModel


	
int ArtmImportModel(intmaster_id, intlength, const char*import_model_args)

	Import phi matrix from a file.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	import_model_args (const_char*) – Serialized ImportModelArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the import_model_args message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmWaitIdle


	
int ArtmWaitIdle(intmaster_id, intlength, const char*wait_idle_args)

	Awaits for ongoing iterations.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	wait_idle_args (const_char*) – Serialized WaitIdleArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the wait_idle_args message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmOverwriteTopicModel


	
int ArtmOverwriteTopicModel(intmaster_id, intlength, const char*topic_model)

	This operation schedules an update of an entire topic model or of it subpart.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	topic_model (const_char*) – Serialized TopicModel message,
describing the new topic model.

	length (int) – The length in bytes of the topic_model message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.







Note that this operation only schedules the update of a topic model.
To make sure the update is completed you must call ArtmWaitIdle()
and ArtmSynchronizeModel().
Remember that by default ArtmSynchronizeModel() will calculate
all regularizers enabled in the configuration of the topic model.
The may result in a different topic model than the one you passed as topic_model parameter.
To avoid this behavior set SynchronizeModelArgs.invoke_regularizers to false.








ArtmRequestThetaMatrix


	
int ArtmRequestThetaMatrix(intmaster_id, intlength, const char*get_theta_args)

	Requests theta matrix. Use ArtmCopyRequestedMessage() to copy the resulting message.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	get_theta_args (const_char*) – Serialized GetThetaMatrixArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the get_theta_args message.






	Returns:	In case of success, returns the length in bytes of a buffer that should be allocated on callers site
and then passed to ArtmCopyRequestedMessage() method.
This will populate the buffer with ThetaMatrix message, carrying the requested information.
In case of a failure, returns one of the error codes.














ArtmRequestTopicModel


	
int ArtmRequestTopicModel(intmaster_id, intlength, const char*get_model_args)

	Requests topic model.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	get_model_args (const_char*) – Serialized GetTopicModelArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the get_model_args message.






	Returns:	In case of success, returns the length in bytes of a buffer that should be allocated on callers site
and then passed to ArtmCopyRequestedMessage() method.
This will populate the buffer with TopicModel message, carrying the requested information.
In case of a failure, returns one of the error codes.














ArtmRequestRegularizerState


	
int ArtmRequestRegularizerState(intmaster_id, const char*regularizer_name)

	Requests state of a specific regularizer.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	regularizer_name (const_char*) – A string identified of the regularizer.






	Returns:	In case of success, returns the length in bytes of a buffer that should be allocated on callers site
and then passed to ArtmCopyRequestedMessage() method.
This will populate the buffer with RegularizerInternalState message, carrying the requested information.
In case of a failure, returns one of the error codes.














ArtmRequestScore


	
int ArtmRequestScore(intmaster_id, intlength, const char*get_score_args)

	Request the result of score calculation.





	Parameters:	
	master_id (int) – The ID of a master component,
returned by ArtmCreateMasterComponent() method.

	const_char* – get_score_args:
Serialized GetScoreValueArgs message,
describing the arguments of this operation.

	length (int) – The length in bytes of the get_score_args message.






	Returns:	In case of success, returns the length in bytes of a buffer that should be allocated on callers site
and then passed to ArtmCopyRequestedMessage() method.
This will populate the buffer with ScoreData message, carrying the requested information.
In case of a failure, returns one of the error codes.














ArtmRequestParseCollection


	
int ArtmRequestParseCollection(intlength, const char*collection_parser_config)

	Parses a text collection into a set of batches and stores them on disk.
Returns a DictionaryConfig message that lists all tokens, occured in the collection.

Check the description of CollectionParserConfig message for more details about this operation.





	Parameters:	
	const_char* – collection_parser_config:
Serialized CollectionParserConfig message,
describing the configuration the collection parser.

	length (int) – The length in bytes of the collection_parser_config message.






	Returns:	In case of success, returns the length in bytes of a buffer that should be allocated on callers site
and then passed to ArtmCopyRequestedMessage() method.
The buffer will contain DictionaryConfig message,
that lists all unique tokens from the collection being parsed.
In case of a failure, returns one of the error codes.












Warning

The following error most likelly indicate that you are trying to parse a very large file
in 32 bit version of BigARTM.

InternalError : failed mapping view: The parameter is incorrect

Try to use 64 bit BigARTM to workaround this issue.






ArtmRequestLoadDictionary


	
int ArtmRequestLoadDictionary(const char*filename)

	Loads a DictionaryConfig message from disk.





	Parameters:	
	const_char* – filename:
A full file name of a file that contains a serialized DictionaryConfig message.






	Returns:	In case of success, returns the length in bytes of a buffer that should be allocated on callers site
and then passed to ArtmCopyRequestedMessage() method.
The buffer will contain the resulting DictionaryConfig message.
In case of a failure, returns one of the error codes.











This method can be used to load  CollectionParserConfig.dictionary_file_name or CollectionParserConfig.cooccurrence_file_name dictionaries,
saved by ArtmRequestParseCollection method.




ArtmRequestLoadBatch


	
int ArtmRequestLoadBatch(const char*filename)

	Loads a Batch message from disk.





	Parameters:	
	const_char* – filename:
A full file name of a file that contains a serialized Batch message.






	Returns:	In case of success, returns the length in bytes of a buffer that should be allocated on callers site
and then passed to ArtmCopyRequestedMessage() method.
The buffer will contain the resulting Batch message.
In case of a failure, returns one of the error codes.











This method can be used to load batches saved by ArtmRequestParseCollection method or ArtmSaveBatch method.




ArtmCopyRequestedMessage


	
int ArtmCopyRequestedMessage(intlength, char*address)

	Copies the result of the last request.





	Parameters:	
	const_char* – address: Target memory location to copy the data.

	length (int) – The length in bytes of the address buffer.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmSaveBatch


	
int ArtmSaveBatch(const char*disk_path, intlength, const char*batch)

	Saves a Batch message to disk.





	Parameters:	
	const_char* – disk_path:
A floder where to save the batch.

	batch (const_char*) – Serialized Batch message to save.

	length (int) – The length in bytes of the batch message.






	Returns:	Returns ARTM_SUCCESS value if operation succeeded,
otherwise returns one of the error codes.














ArtmGetLastErrorMessage


	
const char* ArtmGetLastErrorMessage()

	Retrieves the textual error message, occured during the last failing request.








Error codes

#define ARTM_SUCCESS 0
#define ARTM_STILL_WORKING -1
#define ARTM_INTERNAL_ERROR -2
#define ARTM_ARGUMENT_OUT_OF_RANGE -3
#define ARTM_INVALID_MASTER_ID -4
#define ARTM_CORRUPTED_MESSAGE -5
#define ARTM_INVALID_OPERATION -6
#define ARTM_DISK_READ_ERROR -7
#define ARTM_DISK_WRITE_ERROR -8






	
ARTM_SUCCESS

	The API call succeeded.






	
ARTM_STILL_WORKING

	This error code is applicable only to ArtmWaitIdle().
It indicates that library is still processing the collection.
Try to retrieve results later.






	
ARTM_INTERNAL_ERROR

	The API call failed due to internal error in BigARTM library.
Please, collect steps to reproduce this issue and report it with BigARTM issue tracker.






	
ARTM_ARGUMENT_OUT_OF_RANGE

	The API call failed because one or more values of an argument are outside the allowable range
of values as defined by the invoked method.






	
ARTM_INVALID_MASTER_ID

	An API call that require master_id parameter failed because
MasterComponent with given ID does not exist.






	
ARTM_CORRUPTED_MESSAGE

	Unable to deserialize protocol buffer message.






	
ARTM_INVALID_OPERATION

	The API call is invalid in current state or due to provided parameters.






	
ARTM_DISK_READ_ERROR

	The required files coult not be read from disk.






	
ARTM_DISK_WRITE_ERROR

	The required files could not be writtent to disk.











          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    C++ interface
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
C++ interface

BigARTM C++ interface is currently not documented.
The main entry point is MasterModel class from src/artm/cpp_interface.cc.
Please referto src/bigartm//srcmain.cc for usage examples,
and ask questions at bigartm-users [https://groups.google.com/group/bigartm-users]
or open a new issue [https://github.com/bigartm/bigartm/issues].

class MasterModel {
 public:
  explicit MasterModel(const MasterModelConfig& config);
  ~MasterModel();

  int id() const { return id_; }
  MasterComponentInfo info() const;  // misc. diagnostics information

  const MasterModelConfig& config() const { return config_; }
  MasterModelConfig* mutable_config() { return &config_; }
  void Reconfigure();  // apply MasterModel::config()

  // Operations to work with dictionary through disk
  void GatherDictionary(const GatherDictionaryArgs& args);
  void FilterDictionary(const FilterDictionaryArgs& args);
  void ImportDictionary(const ImportDictionaryArgs& args);
  void ExportDictionary(const ExportDictionaryArgs& args);
  void DisposeDictionary(const std::string& dictionary_name);

  // Operations to work with dictinoary through memory
  void CreateDictionary(const DictionaryData& args);
  DictionaryData GetDictionary(const GetDictionaryArgs& args);

  // Operatinos to work with batches through memory
  void ImportBatches(const ImportBatchesArgs& args);
  void DisposeBatch(const std::string& batch_name);

  // Operations to work with model
  void InitializeModel(const InitializeModelArgs& args);
  void ImportModel(const ImportModelArgs& args);
  void ExportModel(const ExportModelArgs& args);
  void FitOnlineModel(const FitOnlineMasterModelArgs& args);
  void FitOfflineModel(const FitOfflineMasterModelArgs& args);

  // Apply model to batches
  ThetaMatrix Transform(const TransformMasterModelArgs& args);
  ThetaMatrix Transform(const TransformMasterModelArgs& args, Matrix* matrix);

  // Retrieve operations
  TopicModel GetTopicModel(const GetTopicModelArgs& args);
  TopicModel GetTopicModel(const GetTopicModelArgs& args, Matrix* matrix);
  ThetaMatrix GetThetaMatrix(const GetThetaMatrixArgs& args);
  ThetaMatrix GetThetaMatrix(const GetThetaMatrixArgs& args, Matrix* matrix);

  // Retrieve scores
  ScoreData GetScore(const GetScoreValueArgs& args);
  template <typename T>
  T GetScoreAs(const GetScoreValueArgs& args);






Warning

What follows below in this page is really outdated.



In addition to this page consider to look at Plain C interface of BigARTM,
python_interface or Messages.
These documentation files are also to certain degree relevant for C++ interface,
because C++ interface is quite similar to Python interface and share the same Protobuf messages.


MasterComponent


	
class MasterComponent

	
	
MasterComponent(const MasterComponentConfig &config)

	Creates a master component with configuration defined by MasterComponentConfig message.






	
void Reconfigure(const MasterComponentConfig &config)

	Updates the configuration of the master component.






	
const MasterComponentConfig &config() const

	Returns current configuration of the master component.






	
MasterComponentConfig *mutable_config()

	Returns mutable configuration of the master component.
Remember to call Reconfigure() to propagate your changes to master component.






	
void InvokeIteration(int iterations_count = 1)

	Invokes certain number of iterations.






	
bool AddBatch(const Batch &batch, bool reset_scores)

	Adds batch to the processing queue.






	
bool WaitIdle(int timeout = -1)

	Waits for iterations to be completed.
Returns true if BigARTM completed before the specific timeout, otherwise false.






	
std::shared_ptr<TopicModel> GetTopicModel(const std::string &model_name)

	Retrieves Phi matrix of a specific topic model.
The resulting message TopicModel will contain information about token weights distribution across topics.






	
std::shared_ptr<TopicModel> GetTopicModel(const GetTopicModelArgs &args)

	Retrieves Phi matrix based on extended parameters, specified in GetTopicModelArgs message.
The resulting message TopicModel will contain information about token weights distribution across topics.






	
std::shared_ptr<ThetaMatrix> GetThetaMatrix(const std::string &model_name)

	Retrieves Theta matrix of a specific topic model.
The resulting message ThetaMatrix will contain information about items distribution across topics.
Remember to set MasterComponentConfig.cache_theta prior to the last iteration in order to gather Theta matrix.






	
std::shared_ptr<ThetaMatrix> GetThetaMatrix(const GetThetaMatrixArgs &args)

	Retrieves Theta matrix based on extended parameters, specified in GetThetaMatrixArgs message.
The resulting message ThetaMatrix will contain information about items distribution across topics.






	
std::shared_ptr<T> GetScoreAs<T>(const Model &model, const std::string &score_name)

	Retrieves given score for a specific model. Template argument must match the specific ScoreData
type of the score (for example, PerplexityScore).












Model


	
class Model

	
	
Model(const MasterComponent &master_component, const ModelConfig &config)

	Creates a topic model defined by ModelConfig inside given MasterComponent.






	
void Reconfigure(const ModelConfig &config)

	Updates the configuration of the model.






	
const std::string &name() const

	Returns the name of the model.






	
const ModelConfig &config() const

	Returns current configuration of the model.






	
ModelConfig *mutable_config()

	Returns mutable configuration of the model.
Remember to call Reconfigure() to propagate your changes to the model.






	
void Overwrite(const TopicModel &topic_model, bool commit = true)

	Updates the model with new Phi matrix, defined by topic_model.
This operation can be used to provide an explicit initial approximation of the topic model, or to adjust the model in between iterations.

Depending on the commit flag the change can be applied immediately (commit = true) or queued (commit = false).
The default setting is to use commit = true.
You may want to use commit = false if your model is too big to be updated in a single protobuf message.
In this case you should split your model into parts, each part containing subset of all tokens,
and then submit each part in separate Overwrite operation with commit = false.
After that remember to call MasterComponent::WaitIdle() and Synchronize() to propagate your change.






	
void Initialize(const Dictionary &dictionary)

	Initialize topic model based on the Dictionary.
Each token from the dictionary will be included in the model with randomly generated weight.






	
void Export(const string &file_name)

	Exports topic model into a file.






	
void Import(const string &file_name)

	Imports topic model from a file.






	
void Synchronize(double decay_weight, double apply_weight, bool invoke_regularizers)

	Synchronize the model.

This operation updates the Phi matrix of the topic model with all model increments, collected since the last call to Synchronize() method.
The weights in the Phi matrix are set according to decay_weight and apply_weight values
(refer to SynchronizeModelArgs.decay_weight for more details).
Depending on invoke_regularizers parameter this operation may also invoke all regularizers.

Remember to call Model::Synchronize() operation every time after calling MasterComponent::WaitIdle().






	
void Synchronize(const SynchronizeModelArgs &args)

	Synchronize the model based on extended arguments SynchronizeModelArgs.












Regularizer


	
class Regularizer

	
	
Regularizer(const MasterComponent &master_component, const RegularizerConfig &config)

	Creates a regularizer defined by RegularizerConfig inside given MasterComponent.






	
void Reconfigure(const RegularizerConfig &config)

	Updates the configuration of the regularizer.






	
const RegularizerConfig &config() const

	Returns current configuration of the regularizer.






	
RegularizerConfig *mutable_config()

	Returns mutable configuration of the regularizer.
Remember to call Reconfigure() to propagate your changes to the regularizer.












Dictionary


	
class Dictionary

	
	
Dictionary(const MasterComponent &master_component, const DictionaryConfig &config)

	Creates a dictionary defined by DictionaryConfig inside given MasterComponent.






	
void Reconfigure(const DictionaryConfig &config)

	Updates the configuration of the dictionary.






	
const std::string name() const

	Returns the name of the dictionary.






	
const DictionaryConfig &config() const

	Returns current configuration of the dictionary.












Utility methods


	
void SaveBatch(const Batch &batch, const std::string &disk_path)

	Saves Batch into a specific folder.
The name of the resulting file will be autogenerated, and the extention set to .batch






	
std::shared_ptr<DictionaryConfig> LoadDictionary(const std::string &filename)

	Loads the DictionaryConfig message from a specific file on disk.
filename must represent full disk path to the dictionary file.






	
std::shared_ptr<Batch> LoadBatch(const std::string &filename)

	Loads the Batch message from a specific file on disk.
filename must represent full disk path to the batch file, including .batch extention.






	
std::shared_ptr<DictionaryConfig> ParseCollection(const CollectionParserConfig &config)

	Parses a text collection as defined by CollectionParserConfig message.
Returns an instance of DictionaryConfig which carry all unique words in the collection and their frequencies.











          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Windows distribution
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	BigARTM 1.0 documentation 

          	Legacy documentation pages 
 
      

    


    
      
          
            
  
Windows distribution

This chapter describes content of BigARTM distribution package for Windows, available at https://github.com/bigartm/bigartm/releases.







	bin/
	
Precompiled binaries of BigARTM for Windows.

This folder must be added to PATH system variable.






	bin/artm.dll
	
Core functionality of the BigARTM library.






	bin/cpp_client.exe
	
Command line utility allows to perform simple experiments

with BigARTM. Remember that not all BigARTM features are

available through cpp_client, but it can serve as a good

starting point to learn basic functionality. For further

details refer to /ref/cpp_client.






	protobuf/
	
A minimalistic version of Google Protocol Buffers

(https://code.google.com/p/protobuf/)

library, required to run BigARTM from Python.

To setup this package follow the instructions in

protobuf/python/README file.






	python/artm/
	
Python programming interface to BigARTM library.

This folder must be added to PYTHONPATH

system variable.






	library.py
	
Implements all classes of BigARTM python interface.






	messages_pb2.py
	
Contains all protobuf messages that can be transfered in

and out BigARTM core library. Most common features are

exposed  with their own API methods, so normally you

do not use python protobuf messages to operate BigARTM.






	python/examples/
	
Python examples of how to use BigARTM:




Files docword.kos.txt and vocab.kos.txt represent

a simple collection of text files in Bag-Of-Words format.

The files are taken from UCI Machine Learning Repository

(https://archive.ics.uci.edu/ml/datasets/Bag+of+Words).






	src/
	
Several programming interfaces to BigARTM library.






	src/c_interface.h
	
Low-level BigARTM interface in C.






	cpp_interface.h,cc
	
C++ interface of BigARTM






	messages.pb.h,cc
	
Protobuf messages for C++ interface






	messages.proto
	
Protobuf description for all messages that appear in the

API of BigARTM. Documented here.






	LICENSE
	License file of BigARTM.









          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Python Module Index
    
    

    

 


  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   a
   


   
     			

     		
       a	

     
       	[image: -]
       	
       artm	
       

     
       	
       	
       artm.score_tracker	
       

   



          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Index
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	BigARTM 1.0 documentation 
 
      

    


    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


_


  	
      
  	__init__() (artm.ARTM method)
  


      	
        
  	(artm.BackgroundTokensRatioScore method)
  


        
  	(artm.BatchVectorizer method)
  


        
  	(artm.DecorrelatorPhiRegularizer method)
  


        
  	(artm.Dictionary method)
  


        
  	(artm.ImproveCoherencePhiRegularizer method)
  


        
  	(artm.ItemsProcessedScore method)
  


        
  	(artm.KlFunctionInfo method)
  


        
  	(artm.LDA method)
  


        
  	(artm.LabelRegularizationPhiRegularizer method)
  


        
  	(artm.MasterComponent method)
  


        
  	(artm.PerplexityScore method)
  


        
  	(artm.SmoothPtdwRegularizer method)
  


        
  	(artm.SmoothSparsePhiRegularizer method)
  


        
  	(artm.SmoothSparseThetaRegularizer method)
  


        
  	(artm.SparsityPhiScore method)
  


        
  	(artm.SparsityThetaScore method)
  


        
  	(artm.SpecifiedSparsePhiRegularizer method)
  


        
  	(artm.ThetaSnippetScore method)
  


        
  	(artm.TopTokensScore method)
  


        
  	(artm.TopicKernelScore method)
  


        
  	(artm.TopicMassPhiScore method)
  


        
  	(artm.TopicSelectionThetaRegularizer method)
  


        
  	(artm.score_tracker.BackgroundTokensRatioScoreTracker method)
  


        
  	(artm.score_tracker.ClassPrecisionScoreTracker method)
  


        
  	(artm.score_tracker.ItemsProcessedScoreTracker method)
  


        
  	(artm.score_tracker.PerplexityScoreTracker method)
  


        
  	(artm.score_tracker.SparsityPhiScoreTracker method)
  


        
  	(artm.score_tracker.SparsityThetaScoreTracker method)
  


        
  	(artm.score_tracker.ThetaSnippetScoreTracker method)
  


        
  	(artm.score_tracker.TopTokensScoreTracker method)
  


        
  	(artm.score_tracker.TopicKernelScoreTracker method)
  


        
  	(artm.score_tracker.TopicMassPhiScoreTracker method)
  


      


  





A


  	
      
  	alpha_iter (SmoothSparseThetaConfig attribute)
  


      
  	apply_weight (SynchronizeModelArgs attribute)
  


      
  	ARTM (class in artm)
  


      
  	artm (module), [1], [2], [3], [4], [5], [6]
  


      
  	artm.score_tracker (module)
  


      
  	artm::Dictionary (C++ class)
  


      
  	artm::Dictionary::config (C++ function)
  


      
  	artm::Dictionary::Dictionary (C++ function)
  


      
  	artm::Dictionary::name (C++ function)
  


      
  	artm::Dictionary::Reconfigure (C++ function)
  


      
  	artm::LoadBatch (C++ function)
  


      
  	artm::LoadDictionary (C++ function)
  


      
  	artm::MasterComponent (C++ class)
  


      
  	artm::MasterComponent::AddBatch (C++ function)
  


      
  	artm::MasterComponent::config (C++ function)
  


      
  	artm::MasterComponent::GetScoreAs<T> (C++ function)
  


      
  	artm::MasterComponent::GetThetaMatrix (C++ function), [1]
  


      
  	artm::MasterComponent::GetTopicModel (C++ function), [1]
  


      
  	artm::MasterComponent::InvokeIteration (C++ function)
  


      
  	artm::MasterComponent::MasterComponent (C++ function)
  


      
  	artm::MasterComponent::mutable_config (C++ function)
  


      
  	artm::MasterComponent::Reconfigure (C++ function)
  


      
  	artm::MasterComponent::WaitIdle (C++ function)
  


      
  	artm::Model (C++ class)
  


      
  	artm::Model::config (C++ function)
  


      
  	artm::Model::Export (C++ function)
  


      
  	artm::Model::Import (C++ function)
  


      
  	artm::Model::Initialize (C++ function)
  


      
  	artm::Model::Model (C++ function)
  


      
  	artm::Model::mutable_config (C++ function)
  


      
  	artm::Model::name (C++ function)
  


      
  	artm::Model::Overwrite (C++ function)
  


      
  	artm::Model::Reconfigure (C++ function)
  


      
  	artm::Model::Synchronize (C++ function), [1]
  


      
  	artm::ParseCollection (C++ function)
  


      
  	artm::Regularizer (C++ class)
  


      
  	artm::Regularizer::config (C++ function)
  


      
  	artm::Regularizer::mutable_config (C++ function)
  


      
  	artm::Regularizer::Reconfigure (C++ function)
  


      
  	artm::Regularizer::Regularizer (C++ function)
  


      
  	artm::SaveBatch (C++ function)
  


      
  	ARTM_ARGUMENT_OUT_OF_RANGE (C macro)
  


  

  	
      
  	ARTM_CORRUPTED_MESSAGE (C macro)
  


      
  	ARTM_DISK_READ_ERROR (C macro)
  


      
  	ARTM_DISK_WRITE_ERROR (C macro)
  


      
  	ARTM_INTERNAL_ERROR (C macro)
  


      
  	ARTM_INVALID_MASTER_ID (C macro)
  


      
  	ARTM_INVALID_OPERATION (C macro)
  


      
  	ARTM_STILL_WORKING (C macro)
  


      
  	ARTM_SUCCESS (C macro)
  


      
  	ArtmAddBatch (C function)
  


      
  	ArtmCopyRequestedMessage (C function)
  


      
  	ArtmCreateDictionary (C function)
  


      
  	ArtmCreateMasterComponent (C function)
  


      
  	ArtmCreateModel (C function)
  


      
  	ArtmCreateRegularizer (C function)
  


      
  	ArtmDisposeDictionary (C function)
  


      
  	ArtmDisposeMasterComponent (C function)
  


      
  	ArtmDisposeModel (C function)
  


      
  	ArtmDisposeRegularizer (C function)
  


      
  	ArtmExportModel (C function)
  


      
  	ArtmGetLastErrorMessage (C function)
  


      
  	ArtmImportModel (C function)
  


      
  	ArtmInitializeModel (C function)
  


      
  	ArtmInvokeIteration (C function)
  


      
  	ArtmOverwriteTopicModel (C function)
  


      
  	ArtmReconfigureDictionary (C function)
  


      
  	ArtmReconfigureMasterComponent (C function)
  


      
  	ArtmReconfigureModel (C function)
  


      
  	ArtmReconfigureRegularizer (C function)
  


      
  	ArtmRequestLoadBatch (C function)
  


      
  	ArtmRequestLoadDictionary (C function)
  


      
  	ArtmRequestParseCollection (C function)
  


      
  	ArtmRequestRegularizerState (C function)
  


      
  	ArtmRequestScore (C function)
  


      
  	ArtmRequestThetaMatrix (C function)
  


      
  	ArtmRequestTopicModel (C function)
  


      
  	ArtmSaveBatch (C function)
  


      
  	ArtmSynchronizeModel (C function)
  


      
  	ArtmWaitIdle (C function)
  


      
  	attach_model() (artm.MasterComponent method)
  


      
  	average_kernel_contrast (TopicKernelScore attribute)
  


      
  	average_kernel_purity (TopicKernelScore attribute)
  


      
  	average_kernel_size (TopicKernelScore attribute)
  


  





B


  	
      
  	BackgroundTokensRatioScore (class in artm)
  


      
  	BackgroundTokensRatioScoreTracker (class in artm.score_tracker)
  


      
  	batch (AddBatchArgs attribute)
  


      	
        
  	(GetScoreValueArgs attribute)
  


        
  	(GetThetaMatrixArgs attribute)
  


      


      
  	batch_file_name (AddBatchArgs attribute)
  


  

  	
      
  	batch_size (artm.BatchVectorizer attribute)
  


      
  	batches_list (artm.BatchVectorizer attribute)
  


      
  	BatchVectorizer (class in artm)
  


  





C


  	
      
  	cache_theta (MasterComponentConfig attribute)
  


      
  	class_id (Batch attribute)
  


      	
        
  	(DecorrelatorPhiConfig attribute)
  


        
  	(DictionaryEntry attribute)
  


        
  	(GetTopicModelArgs attribute)
  


        
  	(LabelRegularizationPhiConfig attribute)
  


        
  	(ModelConfig attribute)
  


        
  	(SmoothSparsePhiConfig attribute)
  


        
  	(SparsityPhiScoreConfig attribute)
  


        
  	(TopTokensScoreConfig attribute)
  


        
  	(TopicKernelScoreConfig attribute)
  


        
  	(TopicModel attribute)
  


      


      
  	class_weight (ModelConfig attribute)
  


      
  	ClassPrecisionScoreTracker (class in artm.score_tracker)
  


      
  	clean_cache (GetThetaMatrixArgs attribute)
  


      
  	clear_score_array_cache() (artm.MasterComponent method)
  


      
  	clear_score_cache() (artm.MasterComponent method)
  


      
  	clear_theta_cache() (artm.MasterComponent method)
  


      
  	compact_batches (MasterComponentConfig attribute)
  


  

  	
      
  	config (RegularizerConfig attribute)
  


      	
        
  	(ScoreConfig attribute)
  


      


      
  	cooccurrence_file_name (CollectionParserConfig attribute)
  


      
  	cooccurrence_token (CollectionParserConfig attribute)
  


      
  	copy() (artm.Dictionary method)
  


      
  	create() (artm.Dictionary method)
  


      
  	create_dictionary() (artm.MasterComponent method)
  


      
  	create_regularizer() (artm.MasterComponent method)
  


      
  	create_score() (artm.MasterComponent method)
  


  





D


  	
      
  	data (ScoreData attribute)
  


      
  	data_path (artm.BatchVectorizer attribute)
  


      
  	decay_weight (SynchronizeModelArgs attribute)
  


      
  	DecorrelatorPhiRegularizer (class in artm)
  


      
  	description (Batch attribute)
  


      
  	dictionary (artm.BatchVectorizer attribute)
  


      
  	Dictionary (class in artm)
  


  

  	
      
  	dictionary_file_name (CollectionParserConfig attribute)
  


      
  	dictionary_name (InitializeModelArgs attribute)
  


      	
        
  	(LabelRegularizationPhiConfig attribute)
  


        
  	(SmoothSparsePhiConfig attribute)
  


      


      
  	disk_cache_path (MasterComponentConfig attribute)
  


      
  	disk_path (InvokeIterationArgs attribute)
  


      	
        
  	(MasterComponentConfig attribute)
  


      


      
  	dispose() (artm.ARTM method)
  


      
  	docword_file_path (CollectionParserConfig attribute)
  


  





E


  	
      
  	enabled (ModelConfig attribute)
  


      
  	entry (DictionaryConfig attribute)
  


      
  	eps (GetThetaMatrixArgs attribute)
  


      	
        
  	(GetTopicModelArgs attribute)
  


        
  	(SparsityPhiScoreConfig attribute)
  


        
  	(SparsityThetaScoreConfig attribute)
  


        
  	(TopicKernelScoreConfig attribute)
  


      


  

  	
      
  	export_dictionary() (artm.MasterComponent method)
  


      
  	export_model() (artm.MasterComponent method)
  


  





F


  	
      
  	field (Item attribute)
  


      
  	field_name (ItemsProcessedScoreConfig attribute)
  


      	
        
  	(ModelConfig attribute)
  


        
  	(PerplexityScoreConfig attribute)
  


        
  	(SparsityThetaScoreConfig attribute)
  


        
  	(ThetaSnippetScoreConfig attribute)
  


      


      
  	file_name (ExportModelArgs attribute)
  


      	
        
  	(ImportModelArgs attribute)
  


      


      
  	filter() (artm.Dictionary method)
  


  

  	
      
  	filter_dictionary() (artm.MasterComponent method)
  


      
  	fit_offline() (artm.ARTM method)
  


      	
        
  	(artm.LDA method)
  


        
  	(artm.MasterComponent method)
  


      


      
  	fit_online() (artm.ARTM method)
  


      	
        
  	(artm.LDA method)
  


        
  	(artm.MasterComponent method)
  


      


      
  	format (CollectionParserConfig attribute)
  


  





G


  	
      
  	gather() (artm.Dictionary method)
  


      
  	gather_dictionary() (artm.MasterComponent method)
  


      
  	get_dictionary() (artm.MasterComponent method)
  


      
  	get_info() (artm.MasterComponent method)
  


      
  	get_phi() (artm.ARTM method)
  


      
  	get_phi_info() (artm.MasterComponent method)
  


      
  	get_phi_matrix() (artm.MasterComponent method)
  


  

  	
      
  	get_score() (artm.ARTM method)
  


      	
        
  	(artm.MasterComponent method)
  


      


      
  	get_score_array() (artm.MasterComponent method)
  


      
  	get_theta() (artm.ARTM method)
  


      	
        
  	(artm.LDA method)
  


      


      
  	get_theta_info() (artm.MasterComponent method)
  


      
  	get_theta_matrix() (artm.MasterComponent method)
  


      
  	get_top_tokens() (artm.LDA method)
  


  





I


  	
      
  	id (Batch attribute)
  


      	
        
  	(Item attribute)
  


      


      
  	import_dictionary() (artm.MasterComponent method)
  


      
  	import_model() (artm.MasterComponent method)
  


      
  	ImproveCoherencePhiRegularizer (class in artm)
  


      
  	info (artm.ARTM attribute)
  


      
  	initialize() (artm.ARTM method)
  


      	
        
  	(artm.LDA method)
  


      


      
  	initialize_model() (artm.MasterComponent method)
  


      
  	inner_iterations_count (ModelConfig attribute)
  


      
  	internals (TopicModel attribute)
  


      
  	invoke_regularizers (SynchronizeModelArgs attribute)
  


  

  	
      
  	item (Batch attribute)
  


      
  	item_count (ThetaSnippetScoreConfig attribute)
  


      
  	item_id (ThetaMatrix attribute)
  


      	
        
  	(ThetaSnippetScore attribute)
  


        
  	(ThetaSnippetScoreConfig attribute)
  


      


      
  	item_title (ThetaMatrix attribute)
  


      
  	item_weights (ThetaMatrix attribute)
  


      
  	items_count (DictionaryEntry attribute)
  


      
  	ItemsProcessedScore (class in artm)
  


      
  	ItemsProcessedScoreTracker (class in artm.score_tracker)
  


      
  	iterations_count (InvokeIterationArgs attribute)
  


  





K


  	
      
  	kernel_contrast (TopicKernelScore attribute)
  


      
  	kernel_purity (TopicKernelScore attribute)
  


      
  	kernel_size (TopicKernelScore attribute)
  


  

  	
      
  	key_token (DictionaryEntry attribute)
  


      
  	KlFunctionInfo (class in artm)
  


  





L


  	
      
  	LabelRegularizationPhiRegularizer (class in artm)
  


      
  	LDA (class in artm)
  


      
  	library_version (artm.ARTM attribute)
  


  

  	
      
  	load() (artm.ARTM method)
  


      	
        
  	(artm.Dictionary method)
  


        
  	(artm.LDA method)
  


      


      
  	load_text() (artm.Dictionary method)
  


  





M


  	
      
  	MasterComponent (class in artm)
  


      
  	merge_model() (artm.MasterComponent method)
  


      
  	merger_queue_max_size (MasterComponentConfig attribute)
  


      
  	messages_pb2.Batch (built-in class)
  


      
  	messages_pb2.BoolArray (built-in class)
  


      
  	messages_pb2.CollectionParserConfig (built-in class)
  


      
  	messages_pb2.DecorrelatorPhiConfig (built-in class)
  


      
  	messages_pb2.DictionaryConfig (built-in class)
  


      
  	messages_pb2.DictionaryEntry (built-in class)
  


      
  	messages_pb2.DoubleArray (built-in class)
  


      
  	messages_pb2.Field (built-in class)
  


      
  	messages_pb2.FloatArray (built-in class)
  


      
  	messages_pb2.InitializeModelArgs (built-in class)
  


      
  	messages_pb2.IntArray (built-in class)
  


      
  	messages_pb2.Item (built-in class)
  


      
  	messages_pb2.ItemsProcessedScore (built-in class)
  


      
  	messages_pb2.ItemsProcessedScoreConfig (built-in class)
  


      
  	messages_pb2.LabelRegularizationPhiConfig (built-in class)
  


      
  	messages_pb2.MasterComponentConfig (built-in class)
  


      
  	messages_pb2.ModelConfig (built-in class)
  


      
  	messages_pb2.PerplexityScore (built-in class)
  


  

  	
      
  	messages_pb2.PerplexityScoreConfig (built-in class)
  


      
  	messages_pb2.RegularizerConfig (built-in class)
  


      
  	messages_pb2.RegularizerInternalState (built-in class)
  


      
  	messages_pb2.ScoreConfig (built-in class)
  


      
  	messages_pb2.ScoreData (built-in class)
  


      
  	messages_pb2.SmoothSparsePhiConfig (built-in class)
  


      
  	messages_pb2.SmoothSparseThetaConfig (built-in class)
  


      
  	messages_pb2.SparsityPhiScore (built-in class)
  


      
  	messages_pb2.SparsityPhiScoreConfig (built-in class)
  


      
  	messages_pb2.SparsityThetaScoreConfig (built-in class), [1]
  


      
  	messages_pb2.Stream (built-in class)
  


      
  	messages_pb2.SynchronizeModelArgs (built-in class)
  


      
  	messages_pb2.ThetaMatrix (built-in class)
  


      
  	messages_pb2.ThetaSnippetScore (built-in class)
  


      
  	messages_pb2.ThetaSnippetScoreConfig (built-in class)
  


      
  	messages_pb2.TopicKernelScore (built-in class)
  


      
  	messages_pb2.TopicKernelScoreConfig (built-in class)
  


      
  	messages_pb2.TopicModel (built-in class)
  


      
  	messages_pb2.TopTokensScore (built-in class)
  


      
  	messages_pb2.TopTokensScoreConfig (built-in class)
  


      
  	model_name (ExportModelArgs attribute)
  


      	
        
  	(GetScoreValueArgs attribute)
  


        
  	(GetThetaMatrixArgs attribute)
  


        
  	(GetTopicModelArgs attribute)
  


        
  	(ImportModelArgs attribute)
  


        
  	(InitializeModelArgs attribute)
  


        
  	(SynchronizeModelArgs attribute)
  


        
  	(ThetaMatrix attribute)
  


      


  





N


  	
      
  	name (DictionaryConfig attribute)
  


      	
        
  	(ModelConfig attribute)
  


        
  	(RegularizerConfig attribute)
  


        
  	(ScoreConfig attribute)
  


        
  	(ScoreData attribute)
  


        
  	(Stream attribute)
  


        
  	(TopicModel attribute)
  


      


      
  	normalize_model() (artm.MasterComponent method)
  


      
  	normalizer (PerplexityScore attribute)
  


      
  	num_batches (artm.BatchVectorizer attribute)
  


  

  	
      
  	num_entries (TopTokensScore attribute)
  


      
  	num_items_per_batch (CollectionParserConfig attribute)
  


      
  	num_tokens (TopTokensScoreConfig attribute)
  


  





O


  	
      
  	online_batch_processing (MasterComponentConfig attribute)
  


      
  	operation_type (TopicModel attribute)
  


  

  	
      
  	opt_for_avx (ModelConfig attribute)
  


  





P


  	
      
  	PerplexityScore (class in artm)
  


      
  	PerplexityScoreTracker (class in artm.score_tracker)
  


      
  	probability_mass_threshold (TopicKernelScoreConfig attribute)
  


  

  	
      
  	process_batches() (artm.MasterComponent method)
  


      
  	processor_queue_max_size (MasterComponentConfig attribute)
  


      
  	processors_count (MasterComponentConfig attribute)
  


  





R


  	
      
  	raw (PerplexityScore attribute)
  


      
  	reconfigure() (artm.MasterComponent method)
  


      
  	reconfigure_regularizer() (artm.MasterComponent method)
  


      
  	reconfigure_score() (artm.MasterComponent method)
  


      
  	regularize_model() (artm.MasterComponent method)
  


      
  	regularizer_name (ModelConfig attribute)
  


  

  	
      
  	regularizer_tau (ModelConfig attribute)
  


      
  	remove_theta() (artm.ARTM method)
  


      	
        
  	(artm.LDA method)
  


      


      
  	request_type (GetTopicModelArgs attribute)
  


      
  	reset_scores (AddBatchArgs attribute)
  


      	
        
  	(InvokeIterationArgs attribute)
  


      


      
  	reuse_theta (ModelConfig attribute)
  


  





S


  	
      
  	save() (artm.ARTM method)
  


      	
        
  	(artm.Dictionary method)
  


        
  	(artm.LDA method)
  


      


      
  	save_text() (artm.Dictionary method)
  


      
  	score_config (MasterComponentConfig attribute)
  


      
  	score_name (GetScoreValueArgs attribute)
  


      	
        
  	(ModelConfig attribute)
  


      


      
  	SmoothPtdwRegularizer (class in artm)
  


      
  	SmoothSparsePhiRegularizer (class in artm)
  


      
  	SmoothSparseThetaRegularizer (class in artm)
  


  

  	
      
  	SparsityPhiScore (class in artm)
  


      
  	SparsityPhiScoreTracker (class in artm.score_tracker)
  


      
  	SparsityThetaScore (class in artm)
  


      
  	SparsityThetaScoreTracker (class in artm.score_tracker)
  


      
  	SpecifiedSparsePhiRegularizer (class in artm)
  


      
  	stream (MasterComponentConfig attribute)
  


      
  	stream_name (ItemsProcessedScoreConfig attribute)
  


      	
        
  	(ModelConfig attribute)
  


        
  	(PerplexityScoreConfig attribute)
  


        
  	(SparsityThetaScoreConfig attribute)
  


        
  	(ThetaSnippetScoreConfig attribute)
  


      


  





T


  	
      
  	target_folder (CollectionParserConfig attribute)
  


      
  	theta_sparsity_value (PerplexityScore attribute)
  


      
  	ThetaSnippetScore (class in artm)
  


      
  	ThetaSnippetScoreTracker (class in artm.score_tracker)
  


      
  	timeout_milliseconds (AddBatchArgs attribute)
  


      	
        
  	(WaitIdleArgs attribute)
  


      


      
  	title (Item attribute)
  


      
  	token (Batch attribute)
  


      	
        
  	(GetTopicModelArgs attribute)
  


        
  	(TopTokensScore attribute)
  


        
  	(TopicModel attribute)
  


      


      
  	token_count (DictionaryEntry attribute)
  


      
  	token_weights (TopicModel attribute)
  


      
  	topic_index (GetThetaMatrixArgs attribute)
  


      	
        
  	(ThetaMatrix attribute)
  


        
  	(TopTokensScore attribute)
  


        
  	(TopicModel attribute)
  


      


      
  	topic_name (DecorrelatorPhiConfig attribute)
  


      	
        
  	(GetThetaMatrixArgs attribute)
  


        
  	(GetTopicModelArgs attribute)
  


        
  	(LabelRegularizationPhiConfig attribute)
  


        
  	(ModelConfig attribute)
  


        
  	(SmoothSparsePhiConfig attribute)
  


        
  	(SmoothSparseThetaConfig attribute)
  


        
  	(SparsityPhiScoreConfig attribute)
  


        
  	(SparsityThetaScoreConfig attribute)
  


        
  	(ThetaMatrix attribute)
  


        
  	(TopTokensScore attribute)
  


        
  	(TopTokensScoreConfig attribute)
  


        
  	(TopicKernelScoreConfig attribute)
  


        
  	(TopicModel attribute)
  


      


      
  	TopicKernelScore (class in artm)
  


      
  	TopicKernelScoreTracker (class in artm.score_tracker)
  


  

  	
      
  	TopicMassPhiScore (class in artm)
  


      
  	TopicMassPhiScoreTracker (class in artm.score_tracker)
  


      
  	topics_count (ModelConfig attribute)
  


      	
        
  	(ThetaMatrix attribute)
  


        
  	(TopicModel attribute)
  


      


      
  	TopicSelectionThetaRegularizer (class in artm)
  


      
  	TopTokensScore (class in artm)
  


      
  	TopTokensScoreTracker (class in artm.score_tracker)
  


      
  	total_items_count (DictionaryConfig attribute)
  


      
  	total_token_count (DictionaryConfig attribute)
  


      
  	total_tokens (SparsityPhiScore attribute)
  


      
  	total_topics (SparsityThetaScore attribute)
  


      
  	transform() (artm.ARTM method)
  


      	
        
  	(artm.LDA method)
  


        
  	(artm.MasterComponent method)
  


      


      
  	type (RegularizerConfig attribute)
  


      	
        
  	(ScoreConfig attribute)
  


        
  	(ScoreData attribute)
  


        
  	(Stream attribute)
  


      


  





U


  	
      
  	use_new_tokens (ModelConfig attribute)
  


      
  	use_random_theta (ModelConfig attribute)
  


      
  	use_sparse_bow (ModelConfig attribute)
  


  

  	
      
  	use_sparse_format (GetThetaMatrixArgs attribute)
  


      	
        
  	(GetTopicModelArgs attribute)
  


      


      
  	use_unity_based_indices (CollectionParserConfig attribute)
  


  





V


  	
      
  	value (DictionaryEntry attribute)
  


      	
        
  	(ItemsProcessedScore attribute)
  


        
  	(PerplexityScore attribute)
  


        
  	(SparsityPhiScore attribute)
  


        
  	(SparsityThetaScore attribute)
  


      


      
  	values (ThetaSnippetScore attribute)
  


  

  	
      
  	vocab_file_path (CollectionParserConfig attribute)
  


  





W


  	
      
  	weight (TopTokensScore attribute)
  


  

  	
      
  	weights (artm.BatchVectorizer attribute)
  


  





Z


  	
      
  	zero_tokens (SparsityPhiScore attribute)
  


      
  	zero_topics (SparsityThetaScore attribute)
  


  

  	
      
  	zero_words (PerplexityScore attribute)
  


  







          

      

      

    


    
         Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  
_static/comment-close.png





_static/comment-bright.png





_static/comment.png





_static/minus.png





_static/file.png





_static/plus.png





_static/down.png





_static/up.png





_static/down-pressed.png





requirements.html


    
      Navigation


      
        		
          index


        		
          modules |


        		BigARTM 1.0 documentation »

 
      


    


    
      
          
            
  protobuf==2.6.1




          

      

      

    


    
        © Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

ref/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		BigARTM 1.0 documentation »

 
      


    


    
      
          
            
  
BigARTM Reference




		Messages
		DoubleArray


		FloatArray


		BoolArray


		IntArray


		Item


		Field


		Batch


		Stream


		MasterComponentConfig


		ModelConfig


		RegularizerConfig


		SmoothSparseThetaConfig


		SmoothSparsePhiConfig


		DecorrelatorPhiConfig


		LabelRegularizationPhiConfig


		RegularizerInternalState


		DictionaryConfig


		DictionaryEntry


		ScoreConfig


		ScoreData


		PerplexityScoreConfig


		PerplexityScore


		SparsityThetaScoreConfig


		SparsityThetaScore


		SparsityPhiScoreConfig


		SparsityPhiScore


		ItemsProcessedScoreConfig


		ItemsProcessedScore


		TopTokensScoreConfig


		TopTokensScore


		ThetaSnippetScoreConfig


		ThetaSnippetScore


		TopicKernelScoreConfig


		TopicKernelScore


		TopicModel


		ThetaMatrix


		CollectionParserConfig


		SynchronizeModelArgs


		InitializeModelArgs


		GetTopicModelArgs


		GetThetaMatrixArgs


		GetScoreValueArgs


		AddBatchArgs


		InvokeIterationArgs


		WaitIdleArgs


		ExportModelArgs


		ImportModelArgs








		Plain C interface of BigARTM
		Introduction


		ArtmCreateMasterComponent


		ArtmReconfigureMasterComponent


		ArtmDisposeMasterComponent


		ArtmCreateModel


		ArtmReconfigureModel


		ArtmDisposeModel


		ArtmCreateRegularizer


		ArtmReconfigureRegularizer


		ArtmDisposeRegularizer


		ArtmCreateDictionary


		ArtmReconfigureDictionary


		ArtmDisposeDictionary


		ArtmAddBatch


		ArtmInvokeIteration


		ArtmSynchronizeModel


		ArtmInitializeModel


		ArtmExportModel


		ArtmImportModel


		ArtmWaitIdle


		ArtmOverwriteTopicModel


		ArtmRequestThetaMatrix


		ArtmRequestTopicModel


		ArtmRequestRegularizerState


		ArtmRequestScore


		ArtmRequestParseCollection


		ArtmRequestLoadDictionary


		ArtmRequestLoadBatch


		ArtmCopyRequestedMessage


		ArtmSaveBatch


		ArtmGetLastErrorMessage


		Error codes








		C++ interface
		MasterComponent


		Model


		Regularizer


		Dictionary


		Utility methods








		Windows distribution











          

      

      

    


    
        © Copyright 2015, Konstantin Vorontsov.
      Created using Sphinx 1.3.5.
    

  

_static/up-pressed.png





_images/experiment02_artm.png
Model /Functional Pur Prook Sa So K. K, K.

LDA 3436 3801 0.0 0.0 873 0.533 0.507
ARTM 3577 3947 96.3 80.9 1079 0.785 0.731
. -10°
1.22 1.25 1
104 1 n.x?
z 8 £
Z 087 @ 075 068
i :
g o 5 0.5 M,;’
052 0.25 025
&
034 £ = 0 0 0
1-10° 2-10° 3.10° 1-10° 2-10° 3-10°

—— Perplexity - - - Phi Theta Size - -~ Purity Contrast





_images/online_flow.png
Normaliz






_images/cloud_service.png
Big Unstructured Data

Frequency Matrix

Computation-optimized

Instance

BigARTM

Hadoop / Mesos Cluster
.g. Elastic Map Reduce

e.9.on-demad cd 8xlarge

New Topic Model (Phi matrix)

Co | | o || o
[P T T

SIS N A R
IBigARTM BigARTM IBigARTM

Query Instances

Logs, DB dumps, efc.

Consumer Service






_static/ajax-loader.gif





_images/sponsors_RFBR.png
RUSSIAN
FOUNDATION
FOR BASIC

RESEARCH






_images/sponsors_skoltech.png
Skoltech

Skatkovo s

e and Technology





_images/remote_ipython.png
Category:
Bel

Features

& Window
Appearance
Behaviour
Transiation
Selection
Colours

& Connection
Data
Proy
Tenet
Rlogin

o ssH

oot

Kex
Cpher
Ath
™

More bugs

ubuntu@ip-172-30-1-207: ~

C Home x

(<] localhost:

= Jupyter

Files  Running  Clusters

Selectifems to perform actions on them
o

©5 bigartm
I_batches
WelLain_LJ_Experiment
rar
reuters
0 reuters_data
emp
Yandex Disk

& |_experimentipynb

B
PUTTY Configuration [1] Internet Options [2] g
General | Securty | Privacy | Content | Connectons |programs | Advanced
Options cortoling 55H port forwardng
Por forvardng To setup an Intemet comection, cick set
[ Local ports acoept connections from ofher hosts Setup.
e 2 Dial-up and Virtual Private Network settings
Forwarded pots —
add
Desse
add v,
Add newforwarded port
Choose Settngs fyou need to configure a proxy
Destation server fo a comnecton,
Lose este
® Auto IPvd IPvE
Local Area Network (LAN) settings
LN Settings do ot apply to diaup connecons.
= — Choose Settngs sbove fo i up settngs.

oK Cancel

App: ok Bookmarks M Gmail € LEAN (] Travel (3 Microsoft (] Stacy (3 Other

[6]

Upload | ew
Local Area Network (LAN) Settings [3]

Automatic confguration Servers

Automatic confguration may overrde manualsettings. To ensur the »

use of manual settings, disable automatic configuration.

Automatically detect settngs

[ use automatic configuration script

Proxy server

 a proxy server for your LAN (These settings wil not apply to
J-up or VPN connections).

[JBypass proxy server for local addresses
B

oK Cancel >

(3 Other bookmarks

Proxy Settings [4]

Proxy address to use

]

Sodks: locahost

[Juse the same proxy server for al protocols

Exceptions

Do notuse proxy server for addresses beginning with

Use semicolons () to separate entries

Port

555

Cancel






_images/algorithm.png
Algorithm 1 BigARTM's algorithm

1: Initialize ¢, for all we W and t € T;

2 for alli =1,....1 do

3 ni,:=0,ni:=0forallwe W and t € T;
4

for all batches Dj, j = 1,....J do

: it i= 0,71 2= 0 for all we W and t € T;
6 forall de D;do
7 initialize 64 for all ¢ € T
8 repeat
9: = Yot O Ora for all w € d;

10: o 00/ 2, for all t € T;

11:

12: by ngu@i; 0/ Zw for all w € W and ¢ € T;
13: + iy, forallw € Wand t € T

14: ny +ny forall t e T3

15: 2t forallw € W and t €T






_images/sponsors_MIPT.png
M MIPT





_images/v0.7.3_perf.png
Cuueage Bl gan

i i
(A i

B e e

RERARERSRRRARE ; \






_images/theta_update.png
initialize 64 for all t € T

td for allw e d;
Y014/ Z, for all t € T

i1
]Dera 10,
g Lwed Maw
until 8, converges:






_images/v0.7.0_perf.png
CPU Usage. CPUUsage
BigARTM v0.6.4 BigARTM v0.7.0
= =
ar2x 348%

Private Bytes

Private Bytes

B707MB
10

¢l |

338

1029M8
10

44 KB






_images/partner_bBridge.png
bBridge





_images/partners_ap-logo.png
< ANTIPLAGIAT

RESEARCH





stories/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		BigARTM 1.0 documentation »

 
      


    


    
      
          
            
  
Whitep