
BigARTM Documentation
Release 1.0

Konstantin Vorontsov

May 06, 2016





Contents

1 Introduction 3

2 Downloads 5

3 Formats 7

4 Installation 9
4.1 Installation for Windows users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Installation for Linux and Mac OS-X users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Tutorials 13
5.1 BigARTM command line utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Running BigARTM from Python API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 BigARTM FAQ 17
6.1 Can I use BigARTM from other programming languages (not Python)? . . . . . . . . . . . . . . . . 17
6.2 How to retrieve Theta matrix from BigARTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 BigARTM Developer’s Guide 19
7.1 Downloads (Windows) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 Build C++ code on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4 Python code on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5 Build C++ code on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6 Working with iPython notebooks remotely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.7 Compiling .proto files on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.8 Code style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Release Notes 25
8.1 BigARTM v0.7.0 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 BigARTM v0.7.1 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3 BigARTM v0.7.2 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.4 BigARTM v0.7.3 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.5 BigARTM v0.7.4 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 Publications 39

10 Legacy documentation pages 41
10.1 Typical python example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



10.2 Basic BigARTM tutorial for Linux and Mac OS-X users . . . . . . . . . . . . . . . . . . . . . . . . 44
10.3 Basic BigARTM tutorial for Windows users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.4 Enabling Basic BigARTM Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10.5 BigARTM as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.6 BigARTM: The Algorithm Under The Hood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.7 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.8 Python Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.9 Plain C interface of BigARTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.10 C++ interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.11 Windows distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11 Indices and tables 105

Python Module Index 107

ii



BigARTM Documentation, Release 1.0

Getting help

Having trouble? We’d like to help!
• Learn more about BigARTM from our interactive notebooks (in English or in Russian), NLPub.ru, Ma-

chineLearning.ru and several Publications.
• Search for information in the archives of the bigartm-users mailing list, or post a question.
• Report bugs with BigARTM in our ticket tracker.
• Try the FAQ – it’s got answers to many common questions.
• Looking for specific information? Try the genindex, or search.

Contents 1

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM_RU.ipynb
https://nlpub.ru/BigARTM
http://www.machinelearning.ru/wiki/index.php?title=BigARTM
http://www.machinelearning.ru/wiki/index.php?title=BigARTM
https://groups.google.com/group/bigartm-users
https://groups.google.com/d/forum/bigartm-users
https://github.com/bigartm/bigartm/issues


BigARTM Documentation, Release 1.0

2 Contents



CHAPTER 1

Introduction

Warning: Please note that this is a beta version of the BigARTM library which is still undergoing final testing
before its official release. Should you encounter any bugs, lack of functionality or other problems with our library,
please let us know immediately. Your help in this regard is greatly appreciated.

This is the documentation for the BigARTM library. BigARTM is a tool to infer topic models, based on a novel
technique called Additive Regularization of Topic Models. This technique effectively builds multi-objective models
by adding the weighted sums of regularizers to the optimization criterion. BigARTM is known to combine well
very different objectives, including sparsing, smoothing, topics decorrelation and many others. Such combinations of
regularizers significantly improves several quality measures at once almost without any loss of the perplexity.

Online. BigARTM never stores the entire text collection in the main memory. Instead the collection is split into small
chunks called ‘batches’, and BigARTM always loads a limited number of batches into memory at any time.

Parallel. BigARTM can concurrently process several batches, and by doing so it substantially improves the throughput
on multi-core machines. The library hosts all computation in several threads withing a single process, which enables
efficient usage of shared memory across application threads.

Extensible API. BigARTM comes with an API in Python, but can be easily extended for all other languages that have
an implementation of Google Protocol Buffers.

Cross-platform. BigARTM is known to be compatible with gcc, clang and the Microsoft compiler (VS 2012). We
have tested our library on Windows, Ubuntu and Fedora.

Open source. BigARTM is released under the New BSD License. If you plan to use our library commercially, please
beware that BigARTM depends on ZeroMQ. Please, make sure to review ZeroMQ license.

Acknowledgements. BigARTM project is supported by Russian Foundation for Ba-
sic Research (grants 14-07-00847, 14-07-00908, 14-07-31176), Skolkovo Institute of Sci-
ence and Technology (project 081-R), Moscow Institute of Physics and Technology.

3

http://en.wikipedia.org/wiki/Topic_model
http://www.machinelearning.ru/wiki/images/1/1f/Voron14aist.pdf
https://code.google.com/p/protobuf/
http://opensource.org/licenses/BSD-3-Clause
http://zeromq.org/area:licensing
http://www.rfbr.ru/rffi/eng/about
http://www.skoltech.ru/en
http://mipt.ru/en/


BigARTM Documentation, Release 1.0

4 Chapter 1. Introduction



CHAPTER 2

Downloads

• Windows

– Latest 32 bit release: BigARTM_v0.7.4_win32

– Latest 64 bit release: BigARTM_v0.7.4_x64

– All previous releases are available at https://github.com/bigartm/bigartm/releases

Please refer to Basic BigARTM tutorial for Windows users for step by step installation procedure.

• Linux, Mac OS-X

To run BigARTM on Linux and Mac OS-X you need to clone BigARTM repository
(https://github.com/bigartm/bigartm) and build it as described in Basic BigARTM tutorial for Linux and
Mac OS-X users.

• Datasets

Download one of the following datasets to start experimenting with BigARTM. See Formats page for the de-
scription of input data formats.

5

https://github.com/bigartm/bigartm/releases/download/v0.7.4/BigARTM_v0.7.4_win32.7z
https://github.com/bigartm/bigartm/releases/download/v0.7.4/BigARTM_v0.7.4_x64.7z
https://github.com/bigartm/bigartm/releases
https://github.com/bigartm/bigartm


BigARTM Documentation, Release 1.0

Task Source #Words #Items Files
kos UCI 6906 3430 –

docword.kos.txt.gz
(1 MB)

– vocab.kos.txt
(54 KB)

– kos_1k (700
KB)

nips UCI 12419 1500 –
docword.nips.txt.gz
(2.1 MB)

– vocab.nips.txt
(98 KB)

– nips_200 (1.5
MB)

enron UCI 28102 39861 –
docword.enron.txt.gz
(11.7 MB)

–
vocab.enron.txt
(230 KB)

– enron_1k (7.1
MB)

nytimes UCI 102660 300000 –
docword.nytimes.txt.gz
(223 MB)

–
vocab.nytimes.txt
(1.2 MB)

– nytimes_1k
(131 MB)

pubmed UCI 141043 8200000 –
docword.pubmed.txt.gz
(1.7 GB)

–
vocab.pubmed.txt
(1.3 MB)

– pubmed_10k
(1 GB)

wiki Gensim 100000 3665223
– enwiki-

20141208_10k
(1.2 GB)

– enwiki-
20141208_1k
(1.4 GB)

wiki_enru Wiki 196749 216175
– wiki_enru

(282 MB)
– namespaces:
@english,
@russian

lastfm lastfm 1k, 360k
– lastfm_1k (

MB) (VW
format)

– lastfm_360k
( MB) (VW
format)

mmro mmro 7805 1061 –
docword.mmro.txt.gz
(500 KB)

–
vocab.mmro.txt
(150 KB)

–
pPMI_w100.mmro.txt.7z
(23 MB)

–
vw.mmro.txt.7z
(1.4 MB)

eurlex eurlex 19800 21000
– eurlex_1k (13

MB)

6 Chapter 2. Downloads

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
https://s3-eu-west-1.amazonaws.com/artm/kos_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/kos_1k.7z
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.nips.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.nips.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.nips.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.nips.txt
https://s3-eu-west-1.amazonaws.com/artm/nips_200.7z
https://s3-eu-west-1.amazonaws.com/artm/nips_200.7z
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.enron.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.enron.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.enron.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.enron.txt
https://s3-eu-west-1.amazonaws.com/artm/enron_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/enron_1k.7z
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.nytimes.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.nytimes.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.nytimes.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.nytimes.txt
https://s3-eu-west-1.amazonaws.com/artm/nytimes_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/nytimes_1k.7z
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.pubmed.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.pubmed.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.pubmed.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.pubmed.txt
https://s3-eu-west-1.amazonaws.com/artm/pubmed_10k.7z
https://s3-eu-west-1.amazonaws.com/artm/pubmed_10k.7z
http://radimrehurek.com/gensim/wiki.html
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z
http://dumps.wikimedia.org
https://s3-eu-west-1.amazonaws.com/artm/wiki_enru.7z
https://s3-eu-west-1.amazonaws.com/artm/wiki_enru.7z
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/
https://s3-eu-west-1.amazonaws.com/artm/lastfm_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/lastfm_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/lastfm_360k.7z
https://s3-eu-west-1.amazonaws.com/artm/lastfm_360k.7z
http://mmro.ru/
https://s3-eu-west-1.amazonaws.com/artm/docword.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/docword.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/vocab.mmro.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.mmro.txt
https://s3-eu-west-1.amazonaws.com/artm/pPMI_w100.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/pPMI_w100.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt.7z
http://www.ke.tu-darmstadt.de/resources/eurlex
https://s3-eu-west-1.amazonaws.com/artm/eurlex_1k.zip
https://s3-eu-west-1.amazonaws.com/artm/eurlex_1k.zip


CHAPTER 3

Formats

This page describes input data formats compatible with BigARTM. Currently all formats correspond to Bag-of-words
representation, meaning that all linguistic processing (lemmatization, tokenization, detection of n-grams, etc) needs to
be done outside BigARTM.

1. Vowpal Wabbit is a single-format file, based on the following principles:

• each document is depresented in a single line

• all tokens are represented as strings (no need to convert them into an integer identifier)

• token frequency defaults to 1.0, and can be optionally specified after a colon (:)

• namespaces (Batch.class_id) can be identified by a pipe (|)

Example 1

doc1 Alpha Bravo:10 Charlie:5 |author Ola_Nordmann
doc2 Bravo:5 Delta Echo:3 |author Ivan_Ivanov

Example 2

user123 |track-like track2 track5 track7 |track-play track1:10 track2:25 track3:2 track7:8 |track-skip track2:3 track8:1 |artist-like artist4:2 artist5:6 |artist-play artist4:100 artist5:20
user345 |track-like track2 track5 track7 |track-play track1:10 track2:25 track3:2 track7:8 |track-skip track2:3 track8:1 |artist-like artist4:2 artist5:6 |artist-play artist4:100 artist5:20

2. UCI Bag-of-words format consists of two files - vocab.*.txt and docword.*.txt. The format of the
docword.*.txt file is 3 header lines, followed by NNZ triples:

D
W
NNZ
docID wordID count
docID wordID count
...
docID wordID count

The file must be sorted on docID. Values of wordID must be unity-based (not zero-based). The format of
the vocab.*.txt file is line containing wordID=n. Note that words must not have spaces or tabs. In
vocab.*.txt file it is also possible to specify the namespace (Batch.class_id) for tokens, as it is shown
in this example:

token1 @default_class
token2 custom_class
token3 @default_class
token4

7

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Bag-of-words_model
https://github.com/JohnLangford/vowpal_wabbit/wiki/Input-format
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words


BigARTM Documentation, Release 1.0

Use space or tab to separate token from its class. Token that are not followed by class label automatically get
‘’@default_class‘’ as a label (see ‘’token4” in the example).

Unicode support. For non-ASCII characters save vocab.*.txt file in UTF-8 format.

3. Batches (binary BigARTM-specific format).

This is compact and efficient format, based on several protobuf messages in public BigARTM interface (Batch,
Item and Field).

• A batch is a collection of several items

• An item is a collection of several fields

• A field is a collection of pairs (token_id, token_weight).

The following example shows a Python code that generates a synthetic batch.

import artm.messages, random, uuid

num_tokens = 60
num_items = 100
batch = artm.messages.Batch()
batch.id = str(uuid.uuid4())
for token_id in range(0, num_tokens):

batch.token.append('token' + str(token_id))

for item_id in range(0, num_items):
item = batch.item.add()
item.id = item_id
field = item.field.add()
for token_id in range(0, num_tokens):

field.token_id.append(token_id)
background_count = random.randint(1, 5) if (token_id >= 40) else 0
topical_count = 10 if (token_id < 40) and ((token_id % 10) == (item_id % 10)) else 0
field.token_weight.append(background_count + topical_count)

Note that the batch has its local dictionary, batch.token. This dictionary which maps token_id into the
actual token. In order to create a batch from textual files involve one needs to find all distinct words, and map
them into sequential indices.

batch.id must be set to a unique GUID in a format of 00000000-0000-0000-0000-000000000000.

8 Chapter 3. Formats

mailto:''@default_class


CHAPTER 4

Installation

4.1 Installation for Windows users

4.1.1 Download

Download latest binary distribution of BigARTM from https://github.com/bigartm/bigartm/releases. Explicit down-
load links can be found at Downloads section (for 32 bit and 64 bit configurations).

The distribution will contain pre-build binaries, command-line interface and BigARTM API for Python. The distri-
bution also contains a simple dataset. More datasets in BigARTM-compatible format are available in the Downloads
section.

Refer to Windows distribution for details about other files, included in the binary distribution package.

4.1.2 Configure BigARTM Python API

1. Install Python, for example from the following links:

• Python 2.7.11, 64 bit – https://www.python.org/ftp/python/2.7.11/python-2.7.11.amd64.msi, or

• Python 2.7.11, 32 bit – https://www.python.org/ftp/python/2.7.11/python-2.7.11.msi

Remember that the version of BigARTM package must match your version Python installed on your machine.
If you have 32 bit operating system then you must select 32 bit for Python and BigARTM package. If you have
64 bit operating system then you are free to select either version. However, please note that memory usage of
32 bit processes is limited by 2 GB. For this reason we recommend to select 64 bit configurations.

Please note that you must use Python 2.7, because Python 3 is not supported by BigARTM.

Also you need to have several Python libraries to be installed on your machine:

• numpy >= 1.9.2

• pandas >= 0.16.2

2. Add C:\BigARTM\bin folder to your PATH system variable, and add C:\BigARTM\python to your
PYTHONPATH system variable:

set PATH=%PATH%;C:\BigARTM\bin
set PATH=%PATH%;C:\Python27;C:\Python27\Scripts
set PYTHONPATH=%PYTHONPATH%;C:\BigARTM\Python

Remember to change C:\BigARTM and C:\Python27 with your local folders.

9

https://github.com/bigartm/bigartm/releases
https://www.python.org/ftp/python/2.7.11/python-2.7.11.amd64.msi
https://www.python.org/ftp/python/2.7.11/python-2.7.11.msi


BigARTM Documentation, Release 1.0

3. Setup Google Protocol Buffers library, included in the BigARTM release package.

• Copy C:\BigARTM\bin\protoc.exe file into C:\BigARTM\protobuf\src folder

• Run the following commands from command prompt

cd C:\BigARTM\protobuf\Python
python setup.py build
python setup.py install

Avoid python setup.py test step, as it produces several confusing errors. Those errors are harmless.
For further details about protobuf installation refer to protobuf/python/README.

4.2 Installation for Linux and Mac OS-X users

Currently there is no distribution package of BigARTM for Linux. BigARTM had been tested on several Linux OS,
and it is known to work well, but you have to get the source code and compile it locally on your machine.

4.2.1 System dependencies

Building BigARTM requires the following components:

• git (any recent version) – for obtaining source code;

• cmake (at least of version 2.8), make, g++ or clang compiler with c++11 support, boost (at least of version
1.40) – for building library and binary executable;

• python (version 2.7) – for building Python API for BigARTM.

To simplify things, you may type:

• On deb-based distributions: sudo apt-get install git make cmake build-essential
libboost-all-dev

• On rpm-based distributions: sudo yum install git make cmake gcc-c++ glibc-static
libstdc++-static boost boost-static python (for Fedora 22 or higher use dnf instead of
yum)

4.2.2 Download sources and build

Clone the latest BigARTM code from our github repository, and build it via CMake as in the following script.

cd ~
git clone --branch=stable https://github.com/bigartm/bigartm.git
cd bigartm
mkdir build && cd build
cmake ..
make

Note for Linux users: By default building binary executable bigartm requiers static versions of Boost, C and C++
libraries. To alter it, run cmake command with option -DBUILD_STATIC_BIGARTM=OFF.

4.2.3 System-wide installation

To install command-line utility, shared library module and Python interface for BigARTM, you can type:

10 Chapter 4. Installation

https://raw.githubusercontent.com/bigartm/bigartm/master/3rdparty/protobuf/python/README.txt
https://git-scm.org
https://cmake.org
https://python.org


BigARTM Documentation, Release 1.0

sudo make install

Normally this will install:

• bigartm utility into folder /usr/local/bin/;

• shared library libartm.so (artm.dylib for Max OS-X) into folder /usr/local/lib/;

• Python interface for BigARTM into Python-specific system directories, along with necessary dependencies.

If you want to alter target folders for binary and shared library objects, you may specify common prefix
while running cmake command via option -DCMAKE_INSTALL_PREFIX=path_to_folder. By default
CMAKE_INSTALL_PREFIX=/usr/local/.

4.2.4 Configure BigARTM Python API

If you want to use only Python interface for BigARTM, you may run following commands:

# Step 1 - install Google Protobuf as dependency
cd ~/bigartm/3rdparty/protobuf/python
sudo python setup.py install

# Step 2 - install Python interface for BigARTM
cd ~/bigartm/python
sudo python setup.py install

# Step 3 - point ARTM_SHARED_LIBRARY variable to libartm.so (libartm.dylib) location
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.so # for linux
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.dylib # for Mac OS X

We strongly recommend system-wide installation as there is no need to keep BigARTM code after it, so you may
safely remove folder ~bigartm/.

4.2.5 Troubleshooting

While building BigARTM you can see lines similar to the following:

Building python package protobuf 2.5.1-pre
File "/home/ubuntu/bigartm/3rdparty/protobuf/python/setup.py", line 52
print "Generating %s..." % output

^
SyntaxError: Missing parentheses in call to 'print'

This error may happen during google protobuf installation. It indicates that you are using Python 3, which is not
supported by BigARTM. (see this question on StackOverflow for more details on the error around print). Please use
Python 2.7 (e.g Python 2.7.11) to workaround this issue.

Using BigARTM Python API you can encounter this error:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "build/bdist.linux-x86_64/egg/artm/wrapper/api.py", line 19, in __init__
File "build/bdist.linux-x86_64/egg/artm/wrapper/api.py", line 53, in _load_cdll
OSError: libartm.so: cannot open shared object file: No such file or directory
Failed to load artm shared library. Try to add the location of `libartm.so` file into your LD_LIBRARY_PATH system variable, or to set ARTM_SHARED_LIBRARY - a specific system variable which may point to `libartm.so` file, including the full path.

4.2. Installation for Linux and Mac OS-X users 11

http://stackoverflow.com/questions/826948/syntax-error-on-print-with-python-3


BigARTM Documentation, Release 1.0

This error indicates that BigARTM’s python interface can not locate libartm.so (libartm.dylib) files. In such case type
export ARTM_SHARED_LIBRARY=path_to_artm_shared_library.

4.2.6 BigARTM on Travis-CI

To get a live usage example of BigARTM you may check BigARTM’s .travis.yml script and the latest continuous
integration build.

12 Chapter 4. Installation

https://raw.githubusercontent.com/bigartm/bigartm/master/.travis.yml
https://travis-ci.org/bigartm/bigartm
https://travis-ci.org/bigartm/bigartm


CHAPTER 5

Tutorials

5.1 BigARTM command line utility

This document provides an overview of bigartm command-line utility shipped with BigARTM.

For a detailed description of bigartm command line interface refer to bigartm.exe notebook (in Russian).

In brief, you need to download some input data (a textual collection represented in bag-of-words format). We recom-
mend to download vocab and docword files by links provided in Downloads section of the tutorial. Then you can use
bigartm as described by bigartm --help:

BigARTM - library for advanced topic modeling (http://bigartm.org):

Input data:
-c [ --read-vw-corpus ] arg Raw corpus in Vowpal Wabbit format
-d [ --read-uci-docword ] arg docword file in UCI format
-v [ --read-uci-vocab ] arg vocab file in UCI format
--read-cooc arg read co-occurrences format
--batch-size arg (=500) number of items per batch
--use-batches arg folder with batches to use

Dictionary:
--dictionary-min-df arg filter out tokens present in less than N

documents / less than P% of documents
--dictionary-max-df arg filter out tokens present in less than N

documents / less than P% of documents
--use-dictionary arg filename of binary dictionary file to use

Model:
--load-model arg load model from file before processing
-t [ --topics ] arg (=16) number of topics
--use-modality arg modalities (class_ids) and their weights
--predict-class arg target modality to predict by theta

matrix

Learning:
-p [ --passes ] arg (=0) number of outer iterations
--inner-iterations-count arg (=10) number of inner iterations
--update-every arg (=0) [online algorithm] requests an update of

the model after update_every document
--tau0 arg (=1024) [online algorithm] weight option from

online update formula
--kappa arg (=0.699999988) [online algorithm] exponent option from

13

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/junk/cli/BigARTM_CommandLineInferface.ipynb


BigARTM Documentation, Release 1.0

online update formula
--reuse-theta reuse theta between iterations
--regularizer arg regularizers (SmoothPhi,SparsePhi,SmoothT

heta,SparseTheta,Decorrelation)
--threads arg (=0) number of concurrent processors (default:

auto-detect)
--async invoke asynchronous version of the online

algorithm
--model-v06 use legacy model from BigARTM v0.6.4

Output:
--save-model arg save the model to binary file after

processing
--save-batches arg batch folder
--save-dictionary arg filename of dictionary file
--write-model-readable arg output the model in a human-readable

format
--write-dictionary-readable arg output the dictionary in a human-readable

format
--write-predictions arg write prediction in a human-readable

format
--write-class-predictions arg write class prediction in a

human-readable format
--write-scores arg write scores in a human-readable format
--force force overwrite existing output files
--csv-separator arg (=;) columns separator for

--write-model-readable and
--write-predictions. Use \t or TAB to
indicate tab.

--score-level arg (=2) score level (0, 1, 2, or 3
--score arg scores (Perplexity, SparsityTheta,

SparsityPhi, TopTokens, ThetaSnippet, or
TopicKernel)

--final-score arg final scores (same as scores)

Other options:
-h [ --help ] display this help message
--response-file arg response file
--paused start paused and waits for a keystroke

(allows to attach a debugger)
--disk-cache-folder arg disk cache folder
--disable-avx-opt disable AVX optimization (gives similar

behavior of the Processor component to
BigARTM v0.5.4)

--use-dense-bow use dense representation of bag-of-words
data in processors

--time-limit arg (=0) limit execution time in milliseconds

Examples:

* Download input data:
wget https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt
wget https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
wget https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt

* Parse docword and vocab files from UCI bag-of-word format; then fit topic model with 20 topics:
bigartm -d docword.kos.txt -v vocab.kos.txt -t 20 --passes 10

14 Chapter 5. Tutorials



BigARTM Documentation, Release 1.0

* Parse VW format; then save the resulting batches and dictionary:
bigartm --read-vw-corpus vw.mmro.txt --save-batches mmro_batches --save-dictionary mmro.dict

* Parse VW format from standard input; note usage of single dash '-' after --read-vw-corpus:
cat vw.mmro.txt | bigartm --read-vw-corpus - --save-batches mmro2_batches --save-dictionary mmro2.dict

* Load and filter the dictionary on document frequency; save the result into a new file:
bigartm --use-dictionary mmro.dict --dictionary-min-df 5 dictionary-max-df 40% --save-dictionary mmro-filter.dict

* Load the dictionary and export it in a human-readable format:
bigartm --use-dictionary mmro.dict --write-dictionary-readable mmro.dict.txt

* Use batches to fit a model with 20 topics; then save the model in a binary format:
bigartm --use-batches mmro_batches --passes 10 -t 20 --save-model mmro.model

* Load the model and export it in a human-readable format:
bigartm --load-model mmro.model --write-model-readable mmro.model.txt

* Load the model and use it to generate predictions:
bigartm --read-vw-corpus vw.mmro.txt --load-model mmro.model --write-predictions mmro.predict.txt

* Fit model with two modalities (@default_class and @target), and use it to predict @target label:
bigartm --use-batches <batches> --use-modality @default_class,@target --topics 50 --passes 10 --save-model model.bin
bigartm --use-batches <batches> --use-modality @default_class,@target --topics 50 --load-model model.bin

--write-predictions pred.txt --csv-separator=tab
--predict-class @target --write-class-predictions pred_class.txt --score ClassPrecision

* Fit simple regularized model (increase sparsity up to 60-70%):
bigartm -d docword.kos.txt -v vocab.kos.txt --dictionary-max-df 50% --dictionary-min-df 2

--passes 10 --batch-size 50 --topics 20 --write-model-readable model.txt
--regularizer "0.05 SparsePhi" "0.05 SparseTheta"

* Fit more advanced regularize model, with 10 sparse objective topics, and 2 smooth background topics:
bigartm -d docword.kos.txt -v vocab.kos.txt --dictionary-max-df 50% --dictionary-min-df 2

--passes 10 --batch-size 50 --topics obj:10;background:2 --write-model-readable model.txt
--regularizer "0.05 SparsePhi #obj"
--regularizer "0.05 SparseTheta #obj"
--regularizer "0.25 SmoothPhi #background"
--regularizer "0.25 SmoothTheta #background"

* Configure logger to output into stderr:
tset GLOG_logtostderr=1 & bigartm -d docword.kos.txt -v vocab.kos.txt -t 20 --passes 10

5.2 Running BigARTM from Python API

Refer to ARTM notebook (in Russian or in English), which describes high-level Python API of BigARTM.

5.2. Running BigARTM from Python API 15

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb


BigARTM Documentation, Release 1.0

16 Chapter 5. Tutorials



CHAPTER 6

BigARTM FAQ

6.1 Can I use BigARTM from other programming languages (not
Python)?

Yes, as long as your language has an implementation of Google Protocol Buffers (the list can be found here). Note
that Google officially supports C++, Python and Java.

The following figure shows how to call BigARTM methods directly on artm.dll (Windows) or artm.so (Linux).

To write your API please refer to Plain C interface of BigARTM.

17

https://code.google.com/p/protobuf/wiki/ThirdPartyAddOns


BigARTM Documentation, Release 1.0

6.2 How to retrieve Theta matrix from BigARTM

Theta matrix is a matrix that contains the distribution of several items (columns of the matrix) into topics (rows of
the matrix). There are three ways to retrieve such information from BigARTM, and the correct way depends on your
scenario.

1. You want to get Theta matrix for the same collection as you have used to infer the topic model.

Set MasterComponentConfig.cache_theta to true prior to the last iteration, and after the iteration use
MasterComponent::GetThetaMatrix() (in C++) or MasterComponent.GetThetaMatrix (in
Python) to retrieve Theta matrix.

2. You want to repeatedly monitor a small portion of the Theta matrix during ongoing iterations.

In this case you should create Theta Snippet score, defined via ThetaSnippetScoreConfig, and then use
MasterComponent::GetScoreAs<T>() to retrieve the resulting ThetaSnippetScore message.

This configuration of Theta Snippet score require you to provide ThetaSnippetScoreConfig.item_id
listing all IDs of the items that should have Theta’s collected. If you created the batches manually you should
have specified such IDs in Item.id field. If you used other methods to parse the collection from disk then you
shouldt try using sequential IDs, starting with 1.

Remember that Theta snippet score is designed to handle only a small number of items. Attemp to retrieve 100+
items will have a negative effect on performance.

3. You want to classify a new set of items with an existing model.

In this case you need to create a Batch, containing your new items. Then copy this batch to
GetThetaMatrixArgs.batch message, specify GetThetaMatrixArgs.model_name, and
use MasterComponent::GetThetaMatrix() (in C++) or MasterComponent.GetThetaMatrix
(in Python) to retrieve Theta matrix. In this case there is no need set
MasterComponentConfig.cache_theta to true.

Check example11_get_theta_matrix.py for further examples.

18 Chapter 6. BigARTM FAQ

https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example11_get_theta_matrix.py


CHAPTER 7

BigARTM Developer’s Guide

This document describes the development process of BigARTM library.

You should not follow this guide if you are using pre-built BigARTM library via command-line interface or from
Python environment. (refer to to Basic BigARTM tutorial for Windows users or Basic BigARTM tutorial for Linux
and Mac OS-X users depending on your operating system).

7.1 Downloads (Windows)

Download and install the following tools:

• Git for Windows from http://git-scm.com/download/win

– https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20141217/Git-1.9.5-
preview20141217.exe

• Github for Windows from https://windows.github.com/

– https://github-windows.s3.amazonaws.com/GitHubSetup.exe

• Visual Studio 2013 Express for Windows Desktop from https://www.visualstudio.com/en-us/products/visual-
studio-express-vs.aspx

• CMake from http://www.cmake.org/download/

– http://www.cmake.org/files/v3.0/cmake-3.0.2-win32-x86.exe

• Prebuilt Boost binaries from http://sourceforge.net/projects/boost/files/boost-binaries/, for example these two:

– http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-
32.exe/download

– http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-
64.exe/download

• Python from https://www.python.org/downloads/

– https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi

– https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi

• (optional) If you plan to build documentation, download and install sphinx-doc as described here: http://sphinx-
doc.org/latest/index.html

• (optional) 7-zip – http://www.7-zip.org/a/7z920-x64.msi

19

http://git-scm.com/download/win
https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20141217/Git-1.9.5-preview20141217.exe
https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20141217/Git-1.9.5-preview20141217.exe
https://windows.github.com/
https://github-windows.s3.amazonaws.com/GitHubSetup.exe
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.cmake.org/download/
http://www.cmake.org/files/v3.0/cmake-3.0.2-win32-x86.exe
http://sourceforge.net/projects/boost/files/boost-binaries/
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-32.exe/download
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-32.exe/download
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-64.exe/download
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-64.exe/download
https://www.python.org/downloads/
https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi
http://sphinx-doc.org/latest/index.html
http://sphinx-doc.org/latest/index.html
http://www.7-zip.org/a/7z920-x64.msi


BigARTM Documentation, Release 1.0

• (optional) Putty – http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

All explicit links are given just for convenience if you are setting up new environment. You are free to choose other
versions or tools, and most likely they will work just fine for BigARTM. Remember to match the following: * Visual
Studio version must match Boost binaries version, unless you build Boost yourself * Use the same configuration (32
bit or 64 bit) for your Python and BigARTM binaries

7.2 Source code

BigARTM is hosted in public GitHub repository:

https://github.com/bigartm/bigartm

We maintain two branches: master and stable. master branch is the latest source code, potentially including some
unfinished features. stable branch will be lagging behind master, and moved forward to master as soon as mainteiners
decide that it is ready. Typically this should happen at the end of each month. At the same point we will introduce a
new tag (something like v0.7.3 ) and produce a new release for Windows. In addition, stable branch also might receive
small urgent fixes in between releases, typically to address critical issues reported by our users. Such fixes will be also
included in master branch.

To contribute a fix you should fork the repository, code your fix and submit a pull request. against master branch. All
pull requests are regularly monitored by BigARTM maintainers and will be soon merged. Please, keep monitoring the
status of your pull request on travis, which is a continuous integration system used by BigARTM project.

7.3 Build C++ code on Windows

The following steps describe the procedure to build BigARTM’s C++ code on Windows.

• Download and install GitHub for Windows.

• Clone https://github.com/bigartm/bigartm/ repository to any location on your computer. This location is further
refered to as $(BIGARTM_ROOT).

• Download and install Visual Studio 2012 or any newer version. BigARTM will compile just fine with any
edition, including any Visual Studio Express edition (available at www.visualstudio.com).

• Install CMake (tested with cmake-3.0.1, Win32 Installer).

Make sure that CMake executable is added to the PATH environmental variable. To achieve this either select
the option “Add CMake to the system PATH for all users” during installation of CMake, or add it to the PATH
manually.

• Download and install Boost 1.55 or any newer version.

We suggest to use the Prebuilt Windows Binaries. Make sure to select version that match your version of Visual
Studio. You may choose to work with either x64 or Win32 configuration, both of them are supported.

• Configure system variables BOOST_ROOT and Boost_LIBRARY_DIR.

If you have installed boost from the link above, and used the default location, then the setting should look similar
to this:

setx BOOST_ROOT C:\local\boost_1_56_0
setx BOOST_LIBRARYDIR C:\local\boost_1_56_0\lib32-msvc-12.0

For all future details please refer to the documentation of FindBoost module. We also encourage new CMake
users to step through CMake tutorial.

20 Chapter 7. BigARTM Developer’s Guide

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
https://github.com/bigartm/bigartm
https://github.com/bigartm/bigartm/tree/master
https://github.com/bigartm/bigartm/tree/stable
https://github.com/bigartm/bigartm/tree/v0.7.3
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/using-pull-requests
https://travis-ci.org/bigartm/bigartm/pull_requests
http://windows.github.com/
https://github.com/bigartm/bigartm/
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.cmake.org/cmake/resources/software.html
http://sourceforge.net/projects/boost/files/boost-binaries/
http://www.cmake.org/cmake/help/v3.0/module/FindBoost.html
http://www.cmake.org/cmake/help/cmake_tutorial.html


BigARTM Documentation, Release 1.0

• Install Python 2.7 (tested with Python 2.7.6).

You may choose to work with either x64 or Win32 version of the Python, but make sure this matches the
configuration of BigARTM you have choosed earlier. The x64 installation of python will be incompatible with
32 bit BigARTM, and virse versus.

• Use CMake to generate Visual Studio projects and solution files. To do so, open a command prompt, change
working directory to $(BIGARTM_ROOT) and execute the following commands:

mkdir build
cd build
cmake ..

You might have to explicitly specify the cmake generator, especially if you are working with x64 configuration.
To do so, use the following syntax:

cmake .. -G"Visual Studio 12 Win64"

CMake will generate Visual Studio under $(BIGARTM_ROOT)/build/.

• Open generated solution in Visual Studio and build it as you would usually build any other Visual Studio solu-
tion. You may also use MSBuild from Visual Studio command prompt.

The build will output result into the following folders:

– $(BIGARTM_ROOT)/build/bin/[Debug|Release] — binaries (.dll and .exe)

– $(BIGARTM_ROOT)/build/lib/[Debug|Release] — static libraries

At this point you should be able to run BigARTM tests, located here:
$(BIGARTM_ROOT)/build/bin/*/artm_tests.exe.

7.4 Python code on Windows

• Install Python 2.7 (this step is already done if you are following the instructions above),

• Add Python to the PATH environmental variable

http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7

• Follow the instructions in README file in directory $(BIGARTM_ROOT)/3rdparty/protobuf/python/.
In brief, this instructions ask you to run the following commands:

python setup.py build
python setup.py test
python setup.py install

On second step you fill see two failing tests:

Ran 216 tests in 1.252s
FAILED (failures=2)

This 2 failures are OK to ignore.

At this point you should be able to run BigARTM tests for Python, located under
$(BIGARTM_ROOT)/python/tests/.

• [Optional] Download and add to MSVS Python Tools 2.0. All necessary instructions can be found at
https://pytools.codeplex.com/. This will allow you debug you Python scripts using Visual Studio. You may
start with the following solution: $(BIGARTM_ROOT)/src/artm_vs2012.sln.

7.4. Python code on Windows 21

https://www.python.org/ftp/python/2.7.6/python-2.7.6.msi
http://www.cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7
https://pytools.codeplex.com/


BigARTM Documentation, Release 1.0

7.5 Build C++ code on Linux

Refer to Basic BigARTM tutorial for Linux and Mac OS-X users.

7.6 Working with iPython notebooks remotely

It turned out to be common scenario to run BigARTM on a Linux server (for example on Amazon EC2), while
connecting to it from Windows through putty. Here is a convenient way to use ipython notebook in this
scenario:

1. Connect to the Linux machine via putty. Putty needs to be configured with dynamic tunnel for port 8888 as
describe here on this page (port 8888 is a default port for ipython notebook). The same page describes
how to configure internet properties:

Clicking on Settings in Internet Explorer, or Proxy Settings in Google Chrome, should open this dialogue.
Navigate through to the Advanced Proxy section and add localhost:9090 as a SOCKS Proxy.

2. Start ipython notebook in your putty terminal.

3. Open your favourite browser on Windows, and go to http://localhost:8888. Enjoy your notebook while the
engine runs on remotely :)

7.7 Compiling .proto files on Windows

1. Open a new command prompt

2. Copy the following file into $(BIGARTM_ROOT)/src/

22 Chapter 7. BigARTM Developer’s Guide

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
https://anapnea.net/tut_putty_tunneling.php
http://localhost:8888


BigARTM Documentation, Release 1.0

• $(BIGARTM_ROOT)/build/bin/CONFIG/protoc.exe

Here CONFIG can be either Debug or Release (both options will work equally well).

3. Change working directory to $(BIGARTM_ROOT)/src/

4. Run the following commands

.\protoc.exe --cpp_out=. --python_out=. .\artm\messages.proto

.\protoc.exe --cpp_out=. .\artm\core\internals.proto

7.8 Code style

Configure Visual Studio

Open Tools / Text Editor / All languages / Tabs and configure as follows:
• Indenting - smart,
• Tab size - 2,
• Indent size - 2,
• Select “insert spaces”.

We also suggest to configure Visual Studio to show space and tab crlf characters (shortcut: Ctrl+R, Ctrl+W), and
enable vertical line at 120 characters.

In the code we follow google code style with the following changes:

• Exceptions are allowed

• Indentation must be 2 spaces. Tabs are not allowed.

• No lines should exceed 120 characters.

All .h and .cpp files under $(BIGARTM_ROOT)/src/artm/ must be verified for code style with cpplint.py script.
Files, generated by protobuf compiler, are the only exceptions from this rule.

To run the script you need some version of Python installed on your machine. Then execute the script like this:

python cpplint.py --linelength=120 <filename>

On Windows you may run this master-script to check all required files:

$(BIGARTM_ROOT/utils/cpplint_all.bat.

7.8. Code style 23

http://stackoverflow.com/questions/4065815/how-to-turn-off-showing-whitespace-characters-in-visual-studio-ide
http://stackoverflow.com/questions/9894397/100-characters-line-marker-in-visual-studio
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
https://raw.githubusercontent.com/google/styleguide/gh-pages/cpplint/cpplint.py


BigARTM Documentation, Release 1.0

24 Chapter 7. BigARTM Developer’s Guide



CHAPTER 8

Release Notes

8.1 BigARTM v0.7.0 Release notes

We are happy to introduce BigARTM v0.7.0, which brings you the following changes:

• New-style models

• Network modus operandi is removed

• Coherence regularizer and scores (experimental)

8.1.1 New-style models

BigARTM v0.7.0 exposes new APIs to give you additional control over topic model inference:

• ProcessBatches

• MergeModel

• RegularizeModel

• NormalizeModel

Besides being more flexible, new APIs bring many additional benefits:

• Fully deterministic inference, no dependency on threads scheduling or random numbers generation

• Less bottlenecks for performance (DataLoader and Merger threads are removed)

• Phi-matrix regularizers can be implemented externally

• Capability to output Phi matrices directly into your NumPy matrices (scheduled for BigARTM v0.7.2)

• Capability for store Phi matrices in sparse format (scheduled for BigARTM v0.7.3)

• Capability for async ProcessBatches and non-blocking online algorithm (BigARTM v0.7.4)

• Form solid foundation for high performance networking (BigARTM v0.8.X)

The picture below illustrates scalability of BigARTM v0.7.0 vs v0.6.4. Top chart (in green) corresponds to CPU usage
at 28 cores on machine with 32 virtual cores (16 physical cores + hyper threading). As you see, new version is much
more stable. In addition, new version consumes less memory.

25



BigARTM Documentation, Release 1.0

Refer to the following examples that demonstrate usage of new APIs for offline, online and regularized topic mod-
elling:

• example17_process_batches.py

• example18_merge_model.py

• example19_regularize_model.py

Models, tuned with the new API are referred to as new-style models, as opposite to old-style models inferred with
AddBatch, InvokeIteration, WaitIdle and SynchronizeModel APIs.

26 Chapter 8. Release Notes

https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example17_process_batches.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example18_merge_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example19_regularize_model.py


BigARTM Documentation, Release 1.0

Warning: For BigARTM v0.7.X we will continue to support old-style models. However, you should consider
upgrading to new-style models because old APIs (AddBatch, InvokeIteration, WaitIdle and SynchronizeModel)
are likely to be removed in future releases.

The following flow chart gives a typical use-case on new APIs in online regularized algorithm:

Notes on upgrading existing code to new-style models

1. New APIs can only read batches from disk. If your current script passes batches via memory (in Ad-
dBatchArgs.batch field) then you need to store batches on disk first, and then process them with ProcessBatches
method.

2. Initialize your model as follows:

• For python_interface: using MasterComponent.InitializeModel method

• For cpp_interface: using MasterComponent.InitializeModel method

• For c_interface: using ArtmInitializeModel method

Remember that you should not create ModelConfig in order to use this methods. Pass your topics_count (or
topic_name list) as arguments to InitializeModel method.

3. Learn the difference between Phi and Theta scores, as well as between Phi and Theta regularizes. The following
table gives an overview:

8.1. BigARTM v0.7.0 Release notes 27



BigARTM Documentation, Release 1.0

Object Theta Phi
Scores

• Perplexity
• SparsityTheta
• ThetaSnippet
• ItemsProcessed

• SparsityPhi
• TopTokens
• TopicKernel

Regularizers
• SmoothSparseTheta • DecorrelatorPhi

• ImproveCoherencePhi
• LabelRegularizationPhi
• SmoothSparsePhi
• SpecifiedSparsePhi

Phi regularizers needs to be calculated explicitly in RegularizeModel, and then applied in NormalizeModel
(via optional rwt argument). Theta regularizers needs to be enabled in ProcessBatchesArgs. Then they will be
automatically calculated and applied during ProcessBatches.

Phi scores can be calculated at any moment based on the new-style model (same as for old-style models). Theta
scores can be retrieved in two equivalend ways:

pwt_model = "pwt"
master.ProcessBatches(pwt_model, batches, "nwt")
perplexity_score.GetValue(pwt_model).value

or

pwt_model = "pwt"
process_batches_result = master.ProcessBatches(pwt_model, batches, "nwt")
perplexity_score.GetValue(scores = process_batches_result).value

Second way is more explicit. However, the first way allows you to combine aggregate scores accross multiple
ProcessBatches calls:

pwt_model = "pwt"
master.ProcessBatches(pwt_model, batches1, "nwt")
master.ProcessBatches(pwt_model, batches2, "nwt", reset_scores=False)
perplexity_score.GetValue(pwt_model).value

This works because BigARTM caches the result of ProcessBatches together (in association with pwt_model).
The reset_scores switch disables the default behaviour, which is to reset the cache for pwt_model at the begin-
ning of each ProcessBatch call.

4. Continue using GetThetaMatrix and GetTopicModel to retrieve results from the library. For GetThetaMatrix to
work you still need to enable cache_theta in master component. Remember to use the same model in GetTheta-
Matrix as you used as the input to ProcessBatches. You may also omit “target_nwt” argument in ProcessBatches
if you are not interested in getting this output.

master.ProcessBatches("pwt", batches)
theta_matrix = master.GetThetaMatrix("pwt")

5. Stop using certain APIs:

• For python_interface: stop using class Model and ModelConfig message

• For cpp_interface: stop using class Model and ModelConfig message

• For c_interface: stop using methods ArtmCreateModel, ArtmReconfigureModel, ArtmInvokeIteration,
ArtmAddBatch, ArtmWaitIdle, ArtmSynchronizeModel

28 Chapter 8. Release Notes



BigARTM Documentation, Release 1.0

Notes on models handling (reusing, sharing input and output, etc)

Is allowed to output the result of ProcessBatches, NormalizeModel, RegularizeModel and MergeModel into an existing
model. In this case the existing model will be fully overwritten by the result of the operation. For all operations except
ProcessBatches it is also allowed to use the same model in inputs and as an output. For example, typical usage of
MergeModel involves combining “nwt” and “nwt_hat” back into “nwt”. This scenario is fully supported. The output
and input of ProcessBatches must refer to two different models. Finally, note that MergeModel will ignore all non-
existing models in the input (and log a warning). However, if none of the input models exist then MergeModel will
thrown an error.

Known differences

1. Decorrelator regularizer will give slightly different result in the following scenario:

master.ProcessBatches("pwt", batches, "nwt")
master.RegularizeModel("pwt", "nwt", "rwt", phi_regularizers)
master.NormalizeModel("nwt", "pwt", "rwt")

To get the same result as from model.Synchronize() adjust your script as follows:

master.ProcessBatches("pwt", batches, "nwt")
master.NormalizeModel("nwt", "pwt_temp")
master.RegularizeModel("pwt_temp", "nwt", "rwt", phi_regularizers)
master.NormalizeModel("nwt", "pwt", "rwt")

2. You may use GetThetaMatrix(pwt) to retrieve Theta-matrix, previously calculated for new-style models inside
ProcessBatches. However, you can not use GetThetaMatrix(pwt, batch) for new models. They do not have
corresponding ModelConfig, and as a result you need to go through ProcessBatches to pass all parameters.

8.1.2 Network modus operandi is removed

Network modus operandi had been removed from BigARTM v0.7.0.

This decision had been taken because current implementation struggle from many issues, particularly from poor per-
formance and stability. We expect to re-implement this functionality on top of new-style models.

Please, let us know if this caused issues for you, and we will consider to re-introduce networking in v0.8.0.

8.1.3 Coherence regularizer and scores (experimental)

Refer to example in example16_coherence_score.py.

8.2 BigARTM v0.7.1 Release notes

We are happy to introduce BigARTM v0.7.1, which brings you the following changes:

• BigARTM noteboks — new source of information about BigARTM

• ArtmModel — a brand new Python API

• Much faster retrieval of Phi and Theta matrices from Python

• Much faster dictionary imports from Python

• Auto-detect and use all CPU cores by default

• Fixed Import/Export of topic models (was broken in v0.7.0)

8.2. BigARTM v0.7.1 Release notes 29

https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example16_coherence_score.py


BigARTM Documentation, Release 1.0

• New capability to implement Phi-regularizers in Python code

• Improvements in Coherence score

Before you upgrade to BigARTM v0.7.1 please review the changes that break backward compatibility.

8.2.1 BigARTM notebooks

BigARTM notebooks is your go-to links to read more ideas, examples and other information around BigARTM:

• BigARTM notebooks in English

• BigARTM notebooks in Russian

8.2.2 ArtmModel

Best thing about ArtmModel is that this API had been designed by BigARTM users. Not by BigARTM programmers.
This means that BigARTM finally has a nice, clean and easy-to-use programming interface for Python. Don’t believe
it? Just take a look and some examples:

• ArtmModel examples in English

• ArtmModel examples in Russian

That is cool, right? This new API allows you to load input data from several file formats, infer topic model, find topic
distribution for new documents, visualize scores, apply regularizers, and perform many other actions. Each action
typically takes one line to write, which allows you to work with BigARTM interactively from Python command line.

ArtmModel exposes most of BigARTM functionality, and it should be sufficiently powerful to cover 95% of all Bi-
gARTM use-cases. However, for the most advanced scenarios you might still need to go through the previous API
(artm.library). When in doubt which API to use, ask bigartm-users@googlegroups.com — we are there to help!

8.2.3 Coding Phi-regularizers in Python code

This is of course one of those very advanced scenarios where you need to go down to the old API :) Take a look at this
example:

• example19_regularize_model

• example20_attach_model

First one tells how to use Phi regularizers, built into BigARTM. Second one provides a new capability to manipulate
Phi matrix from Python. We call this Attach numpy matrix to the model, because this is similar to attaching debugger
(like gdb or Visual Studio) to a running application.

To implement your own Phi regularizer in Python you need to to attach to rwt model from the first example, and
update its values.

8.2.4 Other changes

Fast retrieval of Phi and Theta matrices. In BigARTM v0.7.1 dense Phi and Theta matrices will be retrieved to
Python as numpy matrices. All copying work will be done in native C++ code. This is much faster comparing to
current solution, where all data is transferred in a large Protobuf message which needs to be deserialized in Python.
ArtmModel already takes advantage of this performance improvements.

Fast dictionary import. BigARTM core now supports importing dictionary files from disk, so you no longer have to
load them to Python. ArtmModel already take advantage of this performance improvement.

30 Chapter 8. Release Notes

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
https://github.com/bigartm/bigartm/blob/master/python/artm/library.py
https://groups.google.com/forum/#!forum/bigartm-users
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example19_regularize_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example20_attach_model.py


BigARTM Documentation, Release 1.0

Auto-detect number of CPU cores. You no longer need to specify num_processors parameter. By default
BigARTM will detect the number of cores on your machine and load all of them. num_processors still can be
used to limit CPU resources used by BigARTM.

Fixed Import/Export of topic models. Export and Import of topic models will now work. As simple as this:

master.ExportModel("pwt", "file_on_disk.model")
master.ImportModel("pwt", "file_on_disk.model")

This will also take care of very large models above 1 GB that does not fit into single protobuf message.

Coherence scores. Ask bigartm-users@googlegroups.com if you are interested :)

8.2.5 Breaking changes

• Changes in Python methods MasterComponent.GetTopicModel and
MasterComponent.GetThetaMatrix

From BigARTM v0.7.1 and onwards method MasterComponent.GetTopicModel of the low-level
Python API will return a tuple, where first argument is of type TopicModel (protobuf message), and second
argument is a numpy matrix. TopicModel message will keep all fields as usual, except token_weights field
which will became empty. Information from token_weights field had been moved to numpy matrix (rows =
tokens, columns = topics).

Similarly, MasterComponent.GetThetaMatrix will also return a tuple, where first argument is of type
ThetaMatrix (protobuf message), and second argument is a numpy matrix. ThetaMatrix message will keep all
fields as usual, except item_weights field which will became empty. Information from item_weights field had
been moved to numpy matrix (rows = items, columns = topics).

Updated examples:

– example11_get_theta_matrix.py

– example12_get_topic_model

Warning: Use the followign syntax to restore the old behaviour:
– MasterComponent.GetTopicModel(use_matrix = False)
– MasterComponent.GetThetaMatrix(use_matrix = False)

This will return a complete protobuf message, without numpy matrix.

• Python method ParseCollectionOrLoadDictionary is now obsolete

– Use ParseCollection method to convert collection into a set of batches

– Use MasterComponent.ImportDictionary to load dictionary into BigARTM

– Updated example: example06_use_dictionaries.py

8.3 BigARTM v0.7.2 Release notes

We are happy to introduce BigARTM v0.7.2, which brings you the following changes:

• Enhancements in high-level python API (ArtmModel -> ARTM)

• Enhancements in low-level python API (library.py -> master_component.py)

• Enhancements in CLI interface (cpp_client)

• Status and information retrievals from BigARTM

8.3. BigARTM v0.7.2 Release notes 31

https://groups.google.com/forum/#!forum/bigartm-users
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example11_get_theta_matrix.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example12_get_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example06_use_dictionaries.py


BigARTM Documentation, Release 1.0

• Allow float token counts (token_count -> token_weight)

• Allow custom weights for each batch (ProcessBatchesArgs.batch_weight)

• Bug fixes and cleanup in the online documentation

8.3.1 Enhancements in Python APIs

Note that ArtmModel had been renamed to ARTM. The naming conventions follow the same pattern as in scikit learn
(e.g. fit, transform and fit_transform methods).

Also note that all input data is now handled by BatchVectorizer class.

Refer to noteboods in English and in Russian for further details about ARTM interface.

Also note that previous low-level python API library.py is superseeded by a new API
master_component.py. For now both APIs are available, but the old one will be removed in future
releases. Refer to this folder for futher examples of the new low-level python API.

Remember that any use of low-level APIs is discouraged. Our recommendation is to always use the high-level python
API ARTM, and e-mail us know if some functionality is not exposed there.

8.3.2 Enhancements in CLI interface

BigARTM command line interface cpp_client had been enhanced with the following options:

• --load_model - to load model from file before processing

• --save_model - to save the model to binary file after processing

• --write_model_readable - to output the model in a human-readable format (CSV)

• --write_predictions - to write prediction in a human-readable format (CSV)

• --dictionary_min_df - to filter out tokens present in less than N documents / less than P% of documents

• --dictionary_max_df - filter out tokens present in less than N documents / less than P% of documents

• --tau0 - an option of the online algorith, describing the weight parameter in the online update formula.
Optional, defaults to 1024.

• --kappa - an option of the online algorithm, describing the exponent parameter in the online update formula.
Optional, defaults to 0.7.

Note that for --dictionary_min_df and --dictionary_max_df can be treated as number, fraction, percent.

• Use a percentage % sign to specify percentage value

• Use a floating value in [0, 1) range to specify a fraction

• Use an integer value (1 or greater) to indicate a number

8.4 BigARTM v0.7.3 Release notes

BigARTM v0.7.3 releases the following changes:

• New command line tool for BigARTM

• Support for classification in bigartm CLI

• Support for asynchronous processing of batches

32 Chapter 8. Release Notes

http://scikit-learn.org
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
https://github.com/bigartm/bigartm/tree/master/python/tests/wrapper


BigARTM Documentation, Release 1.0

• Improvements in coherence regularizer and coherence score

• New TopicMass score for phi matrix

• Support for documents markup

• New API for importing batches through memory

8.4.1 New command line tool for BigARTM

New CLI is named bigartm (or bigrtm.exe on Windows), and it supersedes previous CLI named cpp_client.
New CLI has the following features:

• Parse collection in one of the Formats

• Load dictionary

• Initialize a new model, or import previously created model

• Perform EM-iterations to fit the model

• Export predicted probabilities for all documents into CSV file

• Export model into a file

All command-line options are listed here, and you may see several exampels on BigARTM page at github. At the
moment full documentation is only available in Russian.

8.4.2 Support for classification in BigARTM CLI

BigARTM CLI is now able to perform classification. The following example assumes that your batches have
target_class modality in addition to the default modality (@default_class).

# Fit model
bigartm.exe --use-batches <your batches>

--use-modality @default_class,target_class
--topics 50
--dictionary-min-df 10
--dictionary-max-df 25%
--save-model model.bin

# Apply model and output to text files
bigartm.exe --use-batches <your batches>

--use-modality @default_class,target_class
--topics 50
--passes 0
--load-model model.bin
--predict-class target_class
--write-predictions pred.txt
--write-class-predictions pred_class.txt
--csv-separator=tab
--score ClassPrecision

8.4.3 Support for asynchronous processing of batches

Asynchronous processing of batches enables applications to overlap EM-iterations better utilize CPU resources. The
following chart shows CPU utilization of bigartm.exe with (left-hand side) and without async flag (right-hand
side).

8.4. BigARTM v0.7.3 Release notes 33

http://docs.bigartm.org/en/latest/tutorials/bigartm_cli.html
http://github.com/bigartm/bigartm
https://github.com/bigartm/bigartm-book/blob/master/junk/cli/BigARTM_CommandLineInferface.ipynb


BigARTM Documentation, Release 1.0

8.4.4 TopicMass score for phi matrix

Topic mass score calculates cumulated topic mass for each topic. This is a useful metric to monitor balance between
topics.

8.4.5 Support for documents markup

Document markup provides topic distribution for each word in a document. Since BigARTM v0.7.3 it is posible to
extract this information to use it. A potential application includes color-highlighted maps of the document, where
every work is colored according to the most probable topic of the document.

In the code this feature is refered to as ptdw matrix. It is possible to extract and regularizer ptdw matrices. In future
versions it will be also possible to calculate scores based on ptdw matrix.

8.4.6 New API for importing batches through memory

New low-level APIs ArtmImportBatches and ArtmDisposeBatches allow to import batches from memory
into BigARTM. Those batches are saved in BigARTM, and can be used for batches processing.

8.5 BigARTM v0.7.4 Release notes

BigARTM v0.7.4 is a big release that includes major rework of dictionaries and MasterModel.

34 Chapter 8. Release Notes

https://github.com/bigartm/bigartm/issues/325


BigARTM Documentation, Release 1.0

8.5.1 bigartm/stable branch

Up until now BigARTM has only one master branch, containing the latest code. This branch potentially includes
untested code and unfinished features. We are now introducing bigartm/stable branch, and encourage all users
to stop using master and start fetching from stable. stable branch will be lagging behind master, and moved
forward to master as soon as mainteiners decide that it is ready. At the same point we will introduce a new tag
(something like v0.7.3 ) and produce a new release for Windows. In addition, stable branch also might receive
small urgent fixes in between releases, typically to address critical issues reported by our users. Such fixes will be also
included in master branch.

8.5.2 MasterModel

MasterModel is a new set of low-level APIs that allow users of C-interface to in-
fer models and apply them to new data. The APIs are ArtmCreateMasterModel,
ArtmReconfigureMasterModel, ArtmFitOfflineMasterModel, ArtmFitOnlineMasterModel
and ArtmRequestTransformMasterModel, togehter with corresponding protobuf messages. For a usage
example see src/bigartm/srcmain.cc.

This APIs should be easy to understand for the users who are familiar with Python interface. Basically, we take
ARTM class in Python, and push it down to the core. Now users can create their model via MasterModelConfig
(protobuf message), fit via ArtmFitOfflineMasterModel or ArtmFitOnlineMasterModel, and apply to
the new data via ArtmRequestTransformMasterModel. This means that the user no longer has to orchestrate
low-level building blocks such as ArtmProcessBatches, ArtmMergeModel, ArtmRegularizeModel and
ArtmNormalizeModel.

ArtmCreateMasterModel is similar to ArtmCreateMasterComponent in a sence that it returns
master_id, which can be later passed to all other APIs. This mean that most APIs will continue working as before.
This applies to ArtmRequestThetaMatrix, ArtmRequestTopicModel, ArtmRequestScore, and many
others.

8.5.3 Rework of dictionaries

Previous implementation of the dictionaries was really messy, and we are trying to clean this up. This effort is not
finished yet, however we decided to release current version because it is a major improvement comparing to the
previous version. At the low-level (c_interface), we now have the following methods to work with dictionaries:

• ArtmGatherDictionary collects a dictionary based on a folder with batches,

• ArtmFilterDictionary filter tokens from the dictinoary based on their term frequency or document fre-
quency,

• ArtmCreateDictionary creates a dictionary from a custom DictionaryData object (protobuf mes-
sage),

• ArtmRequestDictionary retrieves a dictionary as DictionaryData object (protobuf message),

• ArtmDisposeDictionary deletes dictionary object from BigARTM,

• ArtmImportDictionary import dictionary from binary file,

• ArtmExportDictionary expor tdictionary into binary file.

All dictionaries are identified by a string ID (dictionary_name). Dictionaries can be used to initialize the model,
in regularizers or in scores.

Note that ArtmImportDictionary and ArtmExportDictionary now uses a different format. For this reason
we require that all imported or exported files end with .dict extension. This limitation is only introduced to make
users aware of the change in binary format.

8.5. BigARTM v0.7.4 Release notes 35

https://github.com/bigartm/bigartm/tree/v0.7.3


BigARTM Documentation, Release 1.0

Warning: Please note that you have to re-generate all dictionaries, created in previous BigARTM versions. To
force this limitation we decided that ArtmImportDictionary and ArtmExportDictionary will require
all imported or exported files end with .dict extension. This limitation is only introduced to make users aware
of the change in binary format.
Please note that in the next version (BigARTM v0.8.0) we are planing to break dictionary format once again. This
is because we will introduce boost.serialize library for all import and export methods. From that point
boost.serialize library will allow us to upgrade formats without breaking backwards compatibility.

The following example illustrate how to work with new dictionaries from Python.

# Parse collection in UCI format from D:\Datasets\docword.kos.txt and D:\Datasets\vocab.kos.txt
# and store the resulting batches into D:\Datasets\kos_batches
batch_vectorizer = artm.BatchVectorizer(data_format='bow_uci',

data_path=r'D:\Datasets',
collection_name='kos',
target_folder=r'D:\Datasets\kos_batches')

# Initialize the model. For now dictionaries exist within the model,
# but we will address this in the future.
model = artm.ARTM(...)

# Gather dictionary named `dict` from batches.
# The resulting dictionary will contain all distinct tokens that occur
# in those batches, and their term frequencies
model.gather_dictionary("dict", "D:\Datasets\kos_batches")

# Filter dictionary by removing tokens with too high or too low term frequency
# Save the result as `filtered_dict`"
model.filter_dictionary(dictionary_name='dict',

dictionary_target_name='filtered_dict',
min_df=10, max_df_rate=0.4)

# Initialize model from `diltered_dict`
model.initialize("filtered_dict")

# Import/export functionality
model.save_dictionary("filtered_dict", "D:\Datasets\kos.dict")
model.load_dictionary("filtered_dict2", "D:\Datasets\kos.dict")

8.5.4 Changes in the infrastructure

• Static linkage for bigartm command-line executable on Linux. To disable static linkage use cmake
-DBUILD_STATIC_BIGARTM=OFF ..

• Install BigARTM python API via python setup.py install

8.5.5 Changes in core functionality

• Custom transform function for KL-div regularizers

• Ability to initialize the model with custom seed

• TopicSelection regularizers

• PeakMemory score (Windows only)

36 Chapter 8. Release Notes



BigARTM Documentation, Release 1.0

• Different options to name batches when parsing collection (GUID as today, and CODE for sequential numbering)

8.5.6 Changes in Python API

• ARTM.dispose() method for managing native memory

• ARTM.get_info() method to retrieve internal state

• Performance fixes

• Expose class prediction functionality

8.5.7 Changes in C++ interface

• Consume MasterModel APIs in C++ interface. Going forward this is the only C++ interface that we will
support.

8.5.8 Changes in console interface

• Better options to work with dictionaries

• --write-dictionary-readable to export dictionary

• --force switch to let user overwrite existing files

• --help generates much better examples

• --model-v06 to experiment with old APIs (ArtmInvokeIteration / ArtmWaitIdle /
ArtmSynchronizeModel)

• --write-scores switch to export scores into file

• --time-limit option to time-box model inference(as an alternative to --passes switch)

8.5. BigARTM v0.7.4 Release notes 37



BigARTM Documentation, Release 1.0

38 Chapter 8. Release Notes



CHAPTER 9

Publications

• Vorontsov, Konstantin and Frei, Oleksandr and Apishev, Murat and Romov, Peter and Suvorova, Marina and
Yanina, Anastasia; Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections
// Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, PDF in English

• Vorontsov K., Potapenko A., Plavin A. Additive Regularization of Topic Models for Topic Selection and Sparse
Factorization. // Statistical Learning and Data Sciences. 2015 — pp. 193-202. PDF in English.

• Vorontsov K., Frei O., Apishev M., Romov P., Dudarenko M. BigARTM: Open Source Library for Regularized
Multimodal Topic Modeling of Large Collections Analysis of Images, Social Networks and Texts. 2015. Slides
in English, Article in English

• Vorontsov K. V. Additive Regularization for Topic Models of Text Collections // Doklady Mathematics. 2014,
Pleiades Publishing, Ltd. — Vol. 89, No. 3, pp. 301–304. PDF in English, PDF in Russian.

• Vorontsov K. V., Potapenko A. A. Tutorial on Probabilistic Topic Modeling: Additive Regularization for
Stochastic Matrix Factorization // AIST‘2014, Analysis of Images, Social networks and Texts. Springer In-
ternational Publishing Switzerland, 2014. Communications in Computer and Information Science (CCIS). Vol.
436. pp. 29–46. PDF in English.

• Vorontsov K. V., Potapenko A. A. Additive Regularization of Topic Models // Machine Learning Journal, Special
Issue “Data Analysis and Intelligent Optimization”, Springer, 2014. PDF in English, PDF in Russian.

39

https://s3-eu-west-1.amazonaws.com/artm/Voron15cikm-tm.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron15slds.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron15aist-slides.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron15aist-slides.pdf
https://s3-eu-west-1.amazonaws.com/artm/Voron15aist.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron14dan-eng.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron14dan.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron14aist.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron-potap14artm-eng.pdf
https://s3-eu-west-1.amazonaws.com/artm/voron-potap14artm-rus.pdf


BigARTM Documentation, Release 1.0

40 Chapter 9. Publications



CHAPTER 10

Legacy documentation pages

Legacy pages are kept to preserve existing user’s links (favourites in browser, etc).

10.1 Typical python example

This page is obsolete, please use the high-level API described in ARTM notebook (in Russian or in English).

10.1.1 Examples of low-level API

Folder C:\BigARTM\python\examples contains several toy examples:

• example01_synthetic_collection.py

• example02_parse_collection.py

• example03_concurrency.py

• example04_online_algorithm.py

• example05_train_and_test_stream.py

• example06_use_dictionaries.py

• example09_regularizers.py

• example10_multimodal.py

• example11_get_theta_matrix.py

• example12_get_topic_model.py

• example13_overwrite_topic_model.py

• example14_initialize_topic_model.py

• example15_import_export_topic_model.py

• example17_process_batches.py

• example18_merge_model.py

• example19_regularize_model.py

• example20_attach_model.py

All examples does not have any parameters, and you may run them without arguments:

41

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example01_synthetic_collection.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example02_parse_collection.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example03_concurrency.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example04_online_algorithm.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example05_train_and_test_stream.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example06_use_dictionaries.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example09_regularizers.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example10_multimodal.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example11_get_theta_matrix.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example12_get_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example13_overwrite_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example14_initialize_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example15_import_export_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example17_process_batches.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example18_merge_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example19_regularize_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example20_attach_model.py


BigARTM Documentation, Release 1.0

C:\BigARTM\python\examples>python example02_parse_collection.py

No batches found, parsing them from textual collection... OK.
Iter#0 : Perplexity = 6885.223 , Phi sparsity = 0.050 , Theta sparsity = 0.012
Iter#1 : Perplexity = 2409.510 , Phi sparsity = 0.113 , Theta sparsity = 0.063
Iter#2 : Perplexity = 2075.445 , Phi sparsity = 0.203 , Theta sparsity = 0.174
Iter#3 : Perplexity = 1855.196 , Phi sparsity = 0.293 , Theta sparsity = 0.261
Iter#4 : Perplexity = 1728.749 , Phi sparsity = 0.370 , Theta sparsity = 0.302
Iter#5 : Perplexity = 1661.044 , Phi sparsity = 0.429 , Theta sparsity = 0.317
Iter#6 : Perplexity = 1621.851 , Phi sparsity = 0.475 , Theta sparsity = 0.327
Iter#7 : Perplexity = 1596.965 , Phi sparsity = 0.511 , Theta sparsity = 0.331

Top tokens per topic:
Topic#1: poll(0.05) iraq(0.04) people(0.02) news(0.02) john(0.01) media(0.01)
Topic#2: republican(0.02) party(0.02) state(0.02) general(0.01) democrats(0.01)
Topic#3: dean(0.04) edwards(0.02) percent(0.02) primary(0.02) clark(0.02)
Topic#4: forces(0.01) baghdad(0.01) iraqis(0.01) coburn(0.01) carson(0.01)
Topic#5: military(0.01) officials(0.01) intelligence(0.01) american(0.01)
Topic#6: electoral(0.04) labor(0.02) culture(0.02) exit(0.02) scoop(0.01)
Topic#7: law(0.01) court(0.01) marriage(0.01) gay(0.01) amendment(0.01)
Topic#8: president(0.03) administration(0.02) campaign(0.01) million(0.01)
Topic#9: years(0.01) ballot(0.01) rights(0.01) nader(0.01) life(0.01)
Topic#10: house(0.08) war(0.03) republicans(0.02) voting(0.02) vote(0.02)

Snippet of theta matrix:
Item#3000: 0.432 0.507 0.059 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Item#2991: 0.249 0.382 0.269 0.000 0.000 0.025 0.016 0.034 0.000 0.026
Item#2992: 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.851 0.000 0.147
Item#2993: 0.358 0.058 0.030 0.141 0.152 0.000 0.002 0.248 0.000 0.010
Item#2994: 0.051 0.142 0.056 0.000 0.000 0.146 0.000 0.000 0.000 0.604
Item#2995: 0.004 0.593 0.000 0.000 0.128 0.005 0.168 0.040 0.030 0.033
Item#2996: 0.069 0.063 0.054 0.000 0.000 0.107 0.008 0.004 0.000 0.696
Item#2997: 0.000 0.194 0.000 0.000 0.043 0.000 0.471 0.228 0.062 0.002
Item#2998: 0.026 0.085 0.042 0.001 0.180 0.000 0.146 0.485 0.022 0.012
Item#2999: 0.312 0.547 0.099 0.000 0.000 0.004 0.008 0.017 0.013 0.000

This simple example loads a text collection from disk and uses iterative scans over the collection to infer a topic model.
Then it outputs top words in each topic and topic distributions of last processed documents. For further information
about this example refer to Typical python example.

10.1.2 Parse collection step

The following python script parses docword.kos.txt and vocab.kos.txt files and converts them into a set
of binary-serialized batches, stored on disk. In addition the script creates a dictionary with all unique tokens in the
collection and stored it on disk. The script also detects if it had been already executed, and in this case it just loads the
dictionary and save it in unique_tokens variable.

The same logic is implemented in a helper-method ParseCollectionOrLoadDictionary method.

data_folder = sys.argv[1] if (len(sys.argv) >= 2) else ''
target_folder = 'kos'
collection_name = 'kos'

batches_found = len(glob.glob(target_folder + "/*.batch"))
if batches_found == 0:

print "No batches found, parsing them from textual collection...",
parser_config = artm.messages_pb2.CollectionParserConfig();

42 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

parser_config.format = artm.library.CollectionParserConfig_Format_BagOfWordsUci

parser_config.docword_file_path = data_folder + 'docword.'+ collection_name + '.txt'
parser_config.vocab_file_path = data_folder + 'vocab.'+ collection_name + '.txt'
parser_config.target_folder = target_folder
parser_config.dictionary_file_name = 'dictionary'
unique_tokens = artm.library.Library().ParseCollection(parser_config);
print " OK."

else:
print "Found " + str(batches_found) + " batches, using them."
unique_tokens = artm.library.Library().LoadDictionary(target_folder + '/dictionary');

You may also download larger collections from the following links. You can get the original collection (docword file
and vocab file) or an already precompiled batches and dictionary.

10.1.3 MasterComponent

Master component is you main entry-point to all BigARTM functionality. The following script creates master compo-
nent and configures it with several regularizers and score calculators.

with artm.library.MasterComponent(disk_path = target_folder) as master:
perplexity_score = master.CreatePerplexityScore()
sparsity_theta_score = master.CreateSparsityThetaScore()
sparsity_phi_score = master.CreateSparsityPhiScore()
top_tokens_score = master.CreateTopTokensScore()
theta_snippet_score = master.CreateThetaSnippetScore()

dirichlet_theta_reg = master.CreateDirichletThetaRegularizer()
dirichlet_phi_reg = master.CreateDirichletPhiRegularizer()
decorrelator_reg = master.CreateDecorrelatorPhiRegularizer()

Master component must be configured with a disk path, which should contain a set of batches produced in the previous
step of this tutorial.

Score calculators allows you to retrieve important quality measures for your topic model. Perplexity, sparsity of theta
and phi matrices, lists of tokens with highest probability within each topic are all examples of such scores. By default
BigARTM does not calculate any scores, so you have to create in master component. The same is true for regularizers,
that allow you to customize your topic model.

For further details about master component refer to MasterComponentConfig.

10.1.4 Configure Topic Model

Topic model configuration defins the number of topics in the model, the list of scores to be calculated, and the list of
regularizers to apply to the model. For further details about model configuration refer to ModelConfig.

model = master.CreateModel(topics_count = 10, inner_iterations_count = 10)
model.EnableScore(perplexity_score)
model.EnableScore(sparsity_phi_score)
model.EnableScore(sparsity_theta_score)
model.EnableScore(top_tokens_score)
model.EnableScore(theta_snippet_score)
model.EnableRegularizer(dirichlet_theta_reg, -0.1)
model.EnableRegularizer(dirichlet_phi_reg, -0.2)
model.EnableRegularizer(decorrelator_reg, 1000000)
model.Initialize(unique_tokens) # Setup initial approximation for Phi matrix.

10.1. Typical python example 43



BigARTM Documentation, Release 1.0

Note that on the last step we configured the initial approximation of Phi matrix. This step is optional — BigARTM is
able to collect all tokens dynamically during first scan of the collection. However, a deterministic initial approximation
helps to reproduce the same results from run to run.

10.1.5 Invoke Iterations

The following script performs several scans over the set of batches. Depending on the size of the collection this step
might be quite time-consuming. It is good idea to output some information after every step.

for iter in range(0, 8):
master.InvokeIteration(1) # Invoke one scan of the entire collection...
master.WaitIdle(); # and wait until it completes.
model.Synchronize(); # Synchronize topic model.
print "Iter#" + str(iter),
print ": Perplexity = %.3f" % perplexity_score.GetValue(model).value,
print ", Phi sparsity = %.3f" % sparsity_phi_score.GetValue(model).value,
print ", Theta sparsity = %.3f" % sparsity_theta_score.GetValue(model).value

If your collection is very large you may want to utilize online algorithm that updates topic model several times during
each iteration, as it is demonstrated by the following script:

master.InvokeIteration(1) # Invoke one scan of the entire collection...
while True:

done = master.WaitIdle(100) # wait 100 ms
model.Synchronize(0.9) # decay weights in current topic model by 0.9,
if (done): # append all increments and invoke all regularizers.

break;

10.1.6 Retrieve and visualize scores

Finally, you are interested in retrieving and visualizing all collected scores.

artm.library.Visualizers.PrintTopTokensScore(top_tokens_score.GetValue(model))
artm.library.Visualizers.PrintThetaSnippetScore(theta_snippet_score.GetValue(model))

10.2 Basic BigARTM tutorial for Linux and Mac OS-X users

Currently there is no distribution package of BigARTM for Linux. BigARTM had been tested on several Linux OS,
and it is known to work well, but you have to get the source code and compile it locally on your machine.

10.2.1 Download sources and build

Clone the latest BigARTM code from our github repository, and build it via CMake as in the following script.

sudo apt-get install git make cmake build-essential libboost-all-dev
cd ~
git clone --branch=stable https://github.com/bigartm/bigartm.git
cd bigartm
mkdir build && cd build
cmake ..
make

44 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

10.2.2 Running BigARTM from command line

There is a simple utility bigartm, which allows you to run BigARTM from command line. To experiment with
this tool you need a small dataset, which you can get via the following script. More datasets are available through
Downloads page.

cd ~/bigartm
mkdir datasets && cd datasets
wget https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz
wget https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
gunzip docword.kos.txt.gz
../build/src/bigartm/bigartm -d docword.kos.txt -v vocab.kos.txt

10.2.3 Configure BigARTM Python API

For more advanced scenarios you need to configure Python interface for BigARTM. To use BigARTM from Python
you need to use Google Protobuf. We recommend to use ‘protobuf 2.5.1-pre’, included in bigartm/3rdparty.

# Step 1 - add BigARTM python bindings to PYTHONPATH
export PYTHONPATH=~/bigartm/python:$PYTHONPATH

# Step 2 - install google protobuf
cd ~/bigartm
cp build/3rdparty/protobuf-cmake/protoc/protoc 3rdparty/protobuf/src/
cd 3rdparty/protobuf/python
python setup.py build
sudo python setup.py install

# Step 3 - point ARTM_SHARED_LIBRARY variable to libartm.so (libartm.dylib) location
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.so # for linux
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.dylib # for Mac OS X

At this point you may run examples under ~/bigartm/python/examples.

10.2.4 Troubleshooting

>python setup.py build
File "setup.py", line 52

print "Generating %s..." % output

SyntaxError: Missing parentheses in call to `print`

This error may happen during google protobuf installation. It indicates that you are using Python 3, which is not
supported by BigARTM. (see this question on StackOverflow for more details on the error around print). Please use
Python 2.7.9 to workaround this issue.

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
Traceback (most recent call last):

File "example01_synthetic_collection.py", line 6, in <module>
import artm.messages_pb2, artm.library, random, uuid

ImportError: No module named artm.messages_pb2

This error indicate that python is unable to locate messages_pb2.py and ‘‘library.py files. Please verify
if you executed Step #1 in the instructions above.

10.2. Basic BigARTM tutorial for Linux and Mac OS-X users 45

http://stackoverflow.com/questions/826948/syntax-error-on-print-with-python-3


BigARTM Documentation, Release 1.0

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
Traceback (most recent call last):

File "example01_synthetic_collection.py", line 6, in <module>
import artm.messages_pb2, artm.library, random, uuid

File "/home/ubuntu/bigartm/python/messages_pb2.py", line 4, in <module>
from google.protobuf import descriptor as _descriptor

ImportError: No module named google.protobuf

This error indicated that python is unable to locate protobuf library. Please verify if you ex-
ecuted Step #2 in the instructions above. If you do not have permissions to execute sudo
python setup.py install step, you may also try to update PYTHONPATH manually:
PYTHONPATH="/home/ubuntu/bigartm/3rdparty/protobuf/python:/home/ubuntu/bigartm/python:$PYTHONPATH".

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
libartm.so: cannot open shared object file: No such file or directory,
fall back to ARTM_SHARED_LIBRARY environment variable
Traceback (most recent call last):

File "example01_synthetic_collection.py", line 27, in <module>
with artm.library.MasterComponent() as master:

File "/home/ubuntu/bigartm/python/artm/library.py", line 179, in __init__
lib = Library().lib_

File "/home/ubuntu/bigartm/python/artm/library.py", line 107, in __init__
self.lib_ = ctypes.CDLL(os.environ['ARTM_SHARED_LIBRARY'])

File "/usr/lib/python2.7/UserDict.py", line 23, in __getitem__
raise KeyError(key)

KeyError: 'ARTM_SHARED_LIBRARY'

This error indicate that BigARTM’s python interface can not locate libartm.so (libartm.dylib) files. Please verify if
you executed Step #3 correctly.

10.2.5 BigARTM on Travis-CI

To get a live usage example of BigARTM you may check BigARTM’s .travis.yml script and the latest continuous
integration build.

10.3 Basic BigARTM tutorial for Windows users

This tutorial gives guidelines for installing and running existing BigARTM examples via command-line interface and
from Python environment.

10.3.1 Download

Download latest binary distribution of BigARTM from https://github.com/bigartm/bigartm/releases. Explicit down-
load links can be found at Downloads section (for 32 bit and 64 bit configurations).

The distribution will contain pre-build binaries, command-line interface and BigARTM API for Python. The distribu-
tion also contains a simple dataset and few python examples that we will be running in this tutorial. More datasets in
BigARTM-compatible format are available in the Downloads section.

Refer to Windows distribution for details about other files, included in the binary distribution package.

46 Chapter 10. Legacy documentation pages

https://raw.githubusercontent.com/bigartm/bigartm/master/.travis.yml
https://travis-ci.org/bigartm/bigartm
https://travis-ci.org/bigartm/bigartm
https://github.com/bigartm/bigartm/releases


BigARTM Documentation, Release 1.0

10.3.2 Running BigARTM from command line

No installation steps are required to run BigARTM from command line. After unpacking binary distribution sim-
ply open command prompt (cmd.exe), change current directory to bin folder inside BigARTM package, and run
cpp_client.exe application as in the following example. As an optional step, we recommend to add bin folder
of the BigARTM distribution to your PATH system variable.

>C:\BigARTM\bin>set PATH=%PATH%;C:\BigARTM\bin
>C:\BigARTM\bin>cpp_client.exe -v ../python/examples/vocab.kos.txt -d ../python/examples/docword.kos.txt -t 4
Parsing text collection... OK.
Iteration 1 took 197 milliseconds.

Test perplexity = 7108.35,
Train perplexity = 7106.18,
Test spatsity theta = 0,
Train sparsity theta = 0,
Spatsity phi = 0.000144802,
Test items processed = 343,
Train items processed = 3087,
Kernel size = 5663,
Kernel purity = 0.958901,
Kernel contrast = 0.292389

Iteration 2 took 195 milliseconds.
Test perplexity = 2563.31,
Train perplexity = 2517.07,
Test spatsity theta = 0,
Train sparsity theta = 0,
Spatsity phi = 0.000144802,
Test items processed = 343,
Train items processed = 3087,
Kernel size = 5559.5,
Kernel purity = 0.956709,
Kernel contrast = 0.298198

...
#1: november(0.054) poll(0.015) bush(0.013) kerry(0.012) polls(0.012) governor(0.011)
#2: bush(0.0083) president(0.0059) republicans(0.0047) house(0.0042) people(0.0039) administration(0.0036)
#3: bush(0.031) iraq(0.018) war(0.012) kerry(0.0096) president(0.0078) administration(0.0076)
#4: kerry(0.018) democratic(0.013) dean(0.012) campaign(0.0097) poll(0.0095) race(0.0082)
ThetaMatrix (last 7 processed documents, ids = 1995,1996,1997,1998,1992,2000,1994):
Topic0: 0.02104 0.02155 0.00604 0.00835 0.00965 0.00006 0.91716
Topic1: 0.15441 0.76643 0.06484 0.11643 0.20409 0.00006 0.00957
Topic2: 0.00399 0.16135 0.00093 0.03890 0.10498 0.00001 0.00037
Topic3: 0.82055 0.05066 0.92819 0.83632 0.68128 0.99987 0.07289

We recommend to download larger datasets, available in Downloads section. All docword and vocab files can be
consumed by BigARTM exactly as in the previous example.

Internally BigARTM always parses such files into batches format (for example, enron_1k (7.1 MB)). If you have
downloaded such pre-parsed collection, you may feed it into BigARTM as follows:

>C:\BigARTM\bin>cpp_client.exe --batch_folder C:\BigARTM\enron
Reuse 40 batches in folder 'enron'
Loading dictionary file... OK.
Iteration 1 took 2502 milliseconds.

For more information about cpp_client.exe refer to /ref/cpp_client section.

10.3. Basic BigARTM tutorial for Windows users 47

https://s3-eu-west-1.amazonaws.com/artm/enron_1k.7z


BigARTM Documentation, Release 1.0

10.3.3 Configure BigARTM Python API

1. Install Python, for example from the following links:

• Python 2.7.9, 64 bit – https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi, or

• Python 2.7.9, 32 bit – https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi

Remember that the version of BigARTM package must match your version Python installed on your machine.
If you have 32 bit operating system then you must select 32 bit for Python and BigARTM package. If you have
64 bit operating system then you are free to select either version. However, please note that memory usage of
32 bit processes is limited by 2 GB. For this reason we recommend to select 64 bit configurations.

Also you need to have several Python libraries to be installed on your machine:

• numpy >= 1.9.2

• scipy >= 0.15.0

• pandas >= 0.16.2

• scikit-learn >= 0.16.1

2. Add C:\BigARTM\bin folder to your PATH system variable, and add C:\BigARTM\python to your
PYTHONPATH system variable:

set PATH=%PATH%;C:\BigARTM\bin
set PATH=%PATH%;C:\Python27;C:\Python27\Scripts
set PYTHONPATH=%PYTHONPATH%;C:\BigARTM\Python

Remember to change C:\BigARTM and C:\Python27 with your local folders.

3. Setup Google Protocol Buffers library, included in the BigARTM release package.

• Copy C:\BigARTM\bin\protoc.exe file into C:\BigARTM\protobuf\src folder

• Run the following commands from command prompt

cd C:\BigARTM\protobuf\Python
python setup.py build
python setup.py install

Avoid python setup.py test step, as it produces several confusing errors. Those errors are harmless.
For further details about protobuf installation refer to protobuf/python/README.

If you are getting errors when configuring or using Python API, please refer to Troubleshooting chapter in Basic
BigARTM tutorial for Linux and Mac OS-X users. The list of issues is common between Windows and Linux.

10.3.4 Running BigARTM from Python API

Refer to ARTM notebook (in Russian or in English), which describes high-level Python API of BigARTM.

10.4 Enabling Basic BigARTM Regularizers

This paper describes the experiment with topic model regularization in BigARTM library using experiment02_artm.py.
The script provides the possibility to learn topic model with three regularizers (sparsing Phi, sparsing Theta and
pairwise topic decorrelation in Phi). It also allows the monitoring of learning process by using quality measures as
hold-out perplexity, Phi and Theta sparsity and average topic kernel characteristics.

48 Chapter 10. Legacy documentation pages

https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi
https://raw.githubusercontent.com/bigartm/bigartm/master/3rdparty/protobuf/python/README.txt
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb
https://raw.githubusercontent.com/bigartm/bigartm/master/python/experiments/experiment02_artm.py


BigARTM Documentation, Release 1.0

Warning: Note that perplexity estimation can influence the learning process in the online algorithm, so we
evaluate perplexity only once per 20 synchronizations to avoid this influence. You can change the frequency using
test_every variable.

We suggest you to have BigARTM installed in $YOUR_HOME_DIRECTORY. To proceed the experiment you need to
execute the following steps:

1. Download the collection, represented as BigARTM batches:

• https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z

• https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z

This data represents a complete dump of the English Wikipedia (approximately 3.7 million documents). The size
of one batch in first version is 1000 documents and 10000 in the second one. We used 10000. The decompressed
folder with batches should be put into $YOUR_HOME_DIRECTORY. You also need to move there the dictionary
file from the batches folder.

The batch, you’d like to use for hold-out perplexity estimation, also must be
placed into $YOUR_HOME_DIRECTORY. In our experiment we used the batch named
243af5b8-beab-4332-bb42-61892df5b044.batch.

2. The next step is the script preparation. Open it’s code and find the declaration(-s) of variable(-s)

• home_folder (line 8) and assign it the path $YOUR_HOME_DIRECTORY;

• batch_size (line 28) and assign it the chosen size of batch;

• batches_disk_path (line 36) and replace the string ‘wiki_10k’ with the name of your directory with
batches;

• test_batch_name (line 43) and replace the string with direct batch’s name with the name of your test
batch;

• tau_decor, tau_phi and tau_theta (lines 57-59) and substitute the values you’d like to use.

3. If you want to estimate the final perplexity on another, larger test sample, put chosen batches into test folder
(in $YOUR_HOME_DIRECTORY directory). Then find in the code of the script the declaration of variable
save_and_test_model (line 30) and assign it True.

4. After all launch the script. Current measures values will be printed into console. Note, that after synchroniza-
tions without perplexity estimation it’s value will be replaced with string ‘NO’. The results of synchronizations
with perplexity estimation in addition will be put in corresponding files in results folder. The file format is
general for all measures: the set of strings «(accumulated number of processed documents, measure value)»:

(10000, 0.018)
(220000, 0.41)
(430000, 0.456)
(640000, 0.475)
...

These files can be used for plot building.

If desired, you can easy change values of any variable in the code of script since it’s sense is clearly commented. If
you used all parameters and data identical our experiment you should get the results, close to these ones

10.4. Enabling Basic BigARTM Regularizers 49

https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z


BigARTM Documentation, Release 1.0

Here you can see the results of comparison between ARTM and LDA models. To make the experiment with LDA
instead of ARTM you only need to change the values of variables tau_decor, tau_phi and tau_theta to 0, 1 / topics_count
and 1 / topics_count respectively and run the script again.

Warning: Note, that we used machine with 8 cores and 15 Gb RAM for our experiment.

10.5 BigARTM as a Service

The following diagram shows a suggested topology for a query service that involve topic modelling on Big Data.

50 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

Here the main use for Hadoop / MapReduce is to process your Big Unstructured Data into a compact bag-of-words
representation. Due to out-of-core design and extreme performance BigARTM will be able to handle this data on a
single compute-optimized node. The resulting topic model should be replicated on all query instances that serve user
requests.

To avoid query-time dependency on BigARTM component you may want to infer topic distributions theta_{td}
for new documents in your code. This can be done as follows. Start from uniform topic assigment theta_{td} =
1 / |T| and update it in the following loop:

where n_dw is the number of word w occurences in document d, phi_wt is an element of the Phi matrix. In
BigARTM the loop is repeated ModelConfig.inner_iterations_count times (defaulst to 10). To precisely
replicate BigARTM behavior one needs to account for class weights and include regularizers. Please contact us if you
need more details.

10.5. BigARTM as a Service 51



BigARTM Documentation, Release 1.0

10.6 BigARTM: The Algorithm Under The Hood

ToDo: link BigARTM to online batch PLSA algorithm.

ToDo: explain the notation in the algorithm.

ToDo: update the algortihm with regularization.

In this algorithm most CPU resources are consumed on steps 8-11 to infer topic distribution for each document. This
operation can be executed concurrently across documents or batches. In BigARTM this parallelization is done across
batches to avoid splitting the work into too small junks.

Processing each batch produces counters $tilde n_{wt}$ and $tilde n_{t}$, which should be then merged with the
corresponding counters coming from other batches. Since this information is produced by multiple concurrent threads
the merging process should be thread-safe and properly synchronised. Our solution is to store all counters $tilde
n_{wt}$ and $tilde n_{t}$ into a single queue, from where they can be picked up by a single merger thread. This
thread will then accumulate the counters without any locking.

Further in this text the term outer iteration loop stands for the loop at the step 2, and the term emph{inner iteration
loop} stands for the loop at step 8. Instead of “repeat until it converges” criteria current implementation uses a fixed
number of iterations, which is configured manually by the user.

Step 15 is incorporated into all steps that require $phi_{wt}$ (e.g. into steps 9, 10 and 11). These steps utilize counters
from the previous iteration ($n^{i-1}_wt$ and $n^{i-1}_t$), which are no longer updated by the merger thread, hence
they represent read-only data and can be accessed from multiple threads without any synchronization. At the same time
the merger thread will accumulate counters for $n^i_{wt}$ and $n^i_t$ for the current iteration, again in a lock-free
manner.

52 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

10.7 Messages

This document explains all protobuf messages that can be transfered between the user code and BigARTM library.

Warning: Remember that all fields is marked as optional to enhance backwards compatibility of the binary
protobuf format. Some fields will result in run-time exception when not specified. Please refer to the documentation
of each field for more details.

Note that we discourage any usage of fields marked as obsolete. Those fields will be removed in future releases.

10.7.1 DoubleArray

class messages_pb2.DoubleArray

Represents an array of double-precision floating point values.

message DoubleArray {
repeated double value = 1 [packed = true];

}

10.7.2 FloatArray

class messages_pb2.FloatArray

Represents an array of single-precision floating point values.

message FloatArray {
repeated float value = 1 [packed = true];

}

10.7.3 BoolArray

class messages_pb2.BoolArray

Represents an array of boolean values.

message BoolArray {
repeated bool value = 1 [packed = true];

}

10.7.4 IntArray

class messages_pb2.IntArray

Represents an array of integer values.

message IntArray {
repeated int32 value = 1 [packed = true];

}

10.7. Messages 53



BigARTM Documentation, Release 1.0

10.7.5 Item

class messages_pb2.Item

Represents a unit of textual information. A typical example of an item is a document that belongs to some text
collection.

message Item {
optional int32 id = 1;
repeated Field field = 2;
optional string title = 3;

}

Item.id
An integer identifier of the item.

Item.field
A set of all fields withing the item.

Item.title
An optional title of the item.

10.7.6 Field

class messages_pb2.Field

Represents a field withing an item. The idea behind fields is that each item might have its title, author, body, abstract,
actual text, links, year of publication, etc. Each of this entities should be represented as a Field. The topic model
defines how those fields should be taken into account when BigARTM infers a topic model. Currently each field is
represented as “bag-of-words” — each token is listed together with the number of its occurrences. Note that each
Field is always part of an Item, Item is part of a Batch, and a batch always contains a list of tokens. Therefore, each
Field just lists the indexes of tokens in the Batch.

message Field {
optional string name = 1 [default = "@body"];
repeated int32 token_id = 2;
repeated int32 token_count = 3;
repeated int32 token_offset = 4;

optional string string_value = 5;
optional int64 int_value = 6;
optional double double_value = 7;
optional string date_value = 8;

repeated string string_array = 16;
repeated int64 int_array = 17;
repeated double double_array = 18;
repeated string date_array = 19;

}

10.7.7 Batch

class messages_pb2.Batch

Represents a set of items. In BigARTM a batch is never split into smaller parts. When it comes to concurrency this
means that each batch goes to a single processor. Two batches can be processed concurrently, but items in one batch
are always processed sequentially.

54 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

message Batch {
repeated string token = 1;
repeated Item item = 2;
repeated string class_id = 3;
optional string description = 4;
optional string id = 5;

}

Batch.token
A set value that defines all tokens than may appear in the batch.

Batch.item
A set of items of the batch.

Batch.class_id
A set of values that define for classes (modalities) of tokens. This repeated field must have the same length as
token. This value is optional, use an empty list indicate that all tokens belong to the default class.

Batch.description
An optional text description of the batch. You may describe for example the source of the batch, preprocessing
technique and the structure of its fields.

Batch.id
Unique identifier of the batch in a form of a GUID (example:
4fb38197-3f09-4871-9710-392b14f00d2e). This field is required.

10.7.8 Stream

class messages_pb2.Stream

Represents a configuration of a stream. Streams provide a mechanism to split the entire collection into virtual subsets
(for example, the ‘train’ and ‘test’ streams).

message Stream {
enum Type {
Global = 0;
ItemIdModulus = 1;

}

optional Type type = 1 [default = Global];
optional string name = 2 [default = "@global"];
optional int32 modulus = 3;
repeated int32 residuals = 4;

}

Stream.type
A value that defines the type of the stream.

10.7. Messages 55



BigARTM Documentation, Release 1.0

Global

Defines a stream containing all items in the
collection.

ItemIdModulus

Defines a stream containing all items with ID that
matches modulus and residuals. An item belongs to
the
stream iff the modulo reminder of item ID is
contained
in the residuals field.

Stream.name
A value that defines the name of the stream. The name must be unique across all streams defined in the master
component.

10.7.9 MasterComponentConfig

class messages_pb2.MasterComponentConfig

Represents a configuration of a master component.

message MasterComponentConfig {
optional string disk_path = 2;
repeated Stream stream = 3;
optional bool compact_batches = 4 [default = true];
optional bool cache_theta = 5 [default = false];
optional int32 processors_count = 6 [default = 1];
optional int32 processor_queue_max_size = 7 [default = 10];
optional int32 merger_queue_max_size = 8 [default = 10];
repeated ScoreConfig score_config = 9;
optional bool online_batch_processing = 13 [default = false]; // obsolete in BigARTM v0.5.8
optional string disk_cache_path = 15;

}

MasterComponentConfig.disk_path
A value that defines the disk location to store or load the collection.

MasterComponentConfig.stream
A set of all data streams to configure in master component. Streams can overlap if needed.

MasterComponentConfig.compact_batches
A flag indicating whether to compact batches in AddBatch() operation. Compaction is a process that shrinks the
dictionary of each batch by removing all unused tokens.

MasterComponentConfig.cache_theta
A flag indicating whether to cache theta matrix. Theta matrix defines the discrete probability distribution of
each document across the topics in topic model. By default BigARTM infers this distribution every time it
processes the document. Option ‘cache_theta’ allows to cache this theta matrix and re-use theha values when
the same document is processed on the next iteration. This option must be set to ‘true’ before calling method
ArtmRequestThetaMatrix().

MasterComponentConfig.processors_count
A value that defines the number of concurrent processor components. The number of processors should normally
not exceed the number of CPU cores.

56 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

MasterComponentConfig.processor_queue_max_size
A value that defines the maximal size of the processor queue. Processor queue contains batches, prefetch from
disk into memory. Recommendations regarding the maximal queue size are as follows:

•the queue size should be at least as large as the number of concurrent processors;

MasterComponentConfig.merger_queue_max_size
A value that defines the maximal size of the merger queue. Merger queue size contains an incremental updates
of topic model, produced by processor components. Try reducing this parameter if BigARTM consumes too
much memory.

MasterComponentConfig.score_config
A set of all scores, available for calculation.

MasterComponentConfig.online_batch_processing
Obsolete in BigARTM v0.5.8.

MasterComponentConfig.disk_cache_path
A value that defines a writtable disk location where this master component can store some temporary files. This
can reduce memory usage, particularly when cache_theta option is enabled. Note that on clean shutdown
master component will will be cleaned this folder automatically, but otherwise it is your responsibility to clean
this folder to avoid running out of disk.

10.7.10 ModelConfig

class messages_pb2.ModelConfig

Represents a configuration of a topic model.

message ModelConfig {
optional string name = 1 [default = "@model"];
optional int32 topics_count = 2 [default = 32];
repeated string topic_name = 3;
optional bool enabled = 4 [default = true];
optional int32 inner_iterations_count = 5 [default = 10];
optional string field_name = 6 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 7 [default = "@global"];
repeated string score_name = 8;
optional bool reuse_theta = 9 [default = false];
repeated string regularizer_name = 10;
repeated double regularizer_tau = 11;
repeated string class_id = 12;
repeated float class_weight = 13;
optional bool use_sparse_bow = 14 [default = true];
optional bool use_random_theta = 15 [default = false];
optional bool use_new_tokens = 16 [default = true];
optional bool opt_for_avx = 17 [default = true];

}

ModelConfig.name
A value that defines the name of the topic model. The name must be unique across all models defined in the
master component.

ModelConfig.topics_count
A value that defines the number of topics in the topic model.

ModelConfig.topic_name
A repeated field that defines the names of the topics. All topic names must be unique within each topic model.
This field is optional, but either topics_count or topic_name must be specified. If both specified,

10.7. Messages 57



BigARTM Documentation, Release 1.0

then topics_count will be ignored, and the number of topics in the model will be based on the length
of topic_name field. When topic_name is not specified the names for all topics will be autogenerated.

ModelConfig.enabled
A flag indicating whether to update the model during iterations.

ModelConfig.inner_iterations_count
A value that defines the fixed number of iterations, performed to infer the theta distribution for each document.

ModelConfig.field_name
Obsolete in BigARTM v0.5.8

ModelConfig.stream_name
A value that defines which stream the model should use.

ModelConfig.score_name
A set of names that defines which scores should be calculated for the model.

ModelConfig.reuse_theta
A flag indicating whether the model should reuse theta values cached on the previous iterations. This option
require cache_theta flag to be set to ‘true’ in MasterComponentConfig.

ModelConfig.regularizer_name
A set of names that define which regularizers should be enabled for the model. This repeated field must have
the same length as regularizer_tau.

ModelConfig.regularizer_tau
A set of values that define the regularization coefficients of the corresponding regularizer. This repeated field
must have the same length as regularizer_name.

ModelConfig.class_id
A set of values that define for which classes (modalities) to build topic model. This repeated field must have the
same length as class_weight.

ModelConfig.class_weight
A set of values that define the weights of the corresponding classes (modalities). This repeated field must have
the same length as class_id. This value is optional, use an empty list to set equal weights for all classes.

ModelConfig.use_sparse_bow
A flag indicating whether to use sparse representation of the Bag-of-words data. The default setting
(use_sparse_bow = true) is best suited for processing textual collections where every token is represented in
a small fraction of all documents. Dense representation (use_sparse_bow = false) better fits for non-textual
collections (for example for matrix factorization).

Note that class_weight and class_id must not be used together with use_sparse_bow=false.

ModelConfig.use_random_theta
A flag indicating whether to initialize p(t|d) distribution with random uniform distribution. The default
setting (use_random_theta = false) sets p(t|d) = 1/T, where T stands for topics_count. Note that
reuse_theta flag takes priority over use_random_theta flag, so that if reuse_theta = true and there is a
cache entry from previous iteration the cache entry will be used regardless of use_random_theta flag.

ModelConfig.use_new_tokens
A flag indicating whether to automatically include new tokens into the topic model. This setting is set to True
by default. As a result, every new token observed in batches is automatically incorporated into topic model
during the next model synchronization (ArtmSynchronizeModel()). The n_wt_ weights for new tokens
randomly generated from [0..1] range.

ModelConfig.opt_for_avx
An experimental flag that allows to disable AVX optimization in processor. By default this option is enabled
as on average it adds ca. 40% speedup on physical hardware. You may want to disable this option if you

58 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

are running on Windows inside virtual machine, or in situation when BigARTM performance degrades from
iteration to interation.

This option does not affect the results, and is only intended for advanced users experimenting with BigARTM
performance.

10.7.11 RegularizerConfig

class messages_pb2.RegularizerConfig

Represents a configuration of a general regularizer.

message RegularizerConfig {
enum Type {
SmoothSparseTheta = 0;
SmoothSparsePhi = 1;
DecorrelatorPhi = 2;
LabelRegularizationPhi = 4;

}

optional string name = 1;
optional Type type = 2;
optional bytes config = 3;

}

RegularizerConfig.name
A value that defines the name of the regularizer. The name must be unique across all names defined in the master
component.

RegularizerConfig.type
A value that defines the type of the regularizer.

SmoothSparseTheta Smooth-sparse regularizer for theta matrix
SmoothSparsePhi Smooth-sparse regularizer for phi matrix
DecorrelatorPhi Decorrelator regularizer for phi matrix
LabelRegularizationPhi Label regularizer for phi matrix

RegularizerConfig.config
A serialized protobuf message that describes regularizer config for the specific regularizer type.

10.7.12 SmoothSparseThetaConfig

class messages_pb2.SmoothSparseThetaConfig

Represents a configuration of a SmoothSparse Theta regularizer.

message SmoothSparseThetaConfig {
repeated string topic_name = 1;
repeated float alpha_iter = 2;

}

SmoothSparseThetaConfig.topic_name
A set of topic names that defines which topics in the model should be regularized. This value is optional, use an
empty list to regularize all topics.

SmoothSparseThetaConfig.alpha_iter
A field of the same length as ModelConfig.inner_iterations_count that defines relative regular-

10.7. Messages 59



BigARTM Documentation, Release 1.0

ization weight for every iteration inner iterations. The actual regularization value is calculated as product of
alpha_iter[i] and ModelConfig.regularizer_tau.

To specify different regularization weight for different topics create multiple regularizers with different
topic_name set, and use different values of ModelConfig.regularizer_tau.

10.7.13 SmoothSparsePhiConfig

class messages_pb2.SmoothSparsePhiConfig

Represents a configuration of a SmoothSparse Phi regularizer.

message SmoothSparsePhiConfig {
repeated string topic_name = 1;
repeated string class_id = 2;
optional string dictionary_name = 3;

}

SmoothSparsePhiConfig.topic_name
A set of topic names that defines which topics in the model should be regularized. This value is optional, use an
empty list to regularize all topics.

SmoothSparsePhiConfig.class_id
This set defines which classes in the model should be regularized. This value is optional, use an empty list to
regularize all classes.

SmoothSparsePhiConfig.dictionary_name
An optional value defining the name of the dictionary to use. The entries of the dictionary are expected to have
DictionaryEntry.key_token, DictionaryEntry.class_id and DictionaryEntry.value
fields. The actual regularization value will be calculated as a product of DictionaryEntry.value and
ModelConfig.regularizer_tau.

This value is optional, if no dictionary is specified than all tokens will be regularized with the same weight.

10.7.14 DecorrelatorPhiConfig

class messages_pb2.DecorrelatorPhiConfig

Represents a configuration of a Decorrelator Phi regularizer.

message DecorrelatorPhiConfig {
repeated string topic_name = 1;
repeated string class_id = 2;

}

DecorrelatorPhiConfig.topic_name
A set of topic names that defines which topics in the model should be regularized. This value is optional, use an
empty list to regularize all topics.

DecorrelatorPhiConfig.class_id
This set defines which classes in the model should be regularized. This value is optional, use an empty list to
regularize all classes.

10.7.15 LabelRegularizationPhiConfig

class messages_pb2.LabelRegularizationPhiConfig

60 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

Represents a configuration of a Label Regularizer Phi regularizer.

message LabelRegularizationPhiConfig {
repeated string topic_name = 1;
repeated string class_id = 2;
optional string dictionary_name = 3;

}

LabelRegularizationPhiConfig.topic_name
A set of topic names that defines which topics in the model should be regularized.

LabelRegularizationPhiConfig.class_id
This set defines which classes in the model should be regularized. This value is optional, use an empty list to
regularize all classes.

LabelRegularizationPhiConfig.dictionary_name
An optional value defining the name of the dictionary to use.

10.7.16 RegularizerInternalState

class messages_pb2.RegularizerInternalState

Represents an internal state of a general regularizer.

message RegularizerInternalState {
enum Type {
MultiLanguagePhi = 5;

}

optional string name = 1;
optional Type type = 2;
optional bytes data = 3;

}

10.7.17 DictionaryConfig

class messages_pb2.DictionaryConfig

Represents a static dictionary.

message DictionaryConfig {
optional string name = 1;
repeated DictionaryEntry entry = 2;
optional int32 total_token_count = 3;
optional int32 total_items_count = 4;

}

DictionaryConfig.name
A value that defines the name of the dictionary. The name must be unique across all dictionaries defined in the
master component.

DictionaryConfig.entry
A list of all entries of the dictionary.

DictionaryConfig.total_token_count
A sum of DictionaryEntry.token_count across all entries in this dictionary. The value is optional and
might be missing when all entries in the dictionary does not carry the DictionaryEntry.token_count
attribute.

10.7. Messages 61



BigARTM Documentation, Release 1.0

DictionaryConfig.total_items_count
A sum of DictionaryEntry.items_count across all entries in this dictionary. The value is optional and
might be missing when all entries in the dictionary does not carry the DictionaryEntry.items_count
attribute.

10.7.18 DictionaryEntry

class messages_pb2.DictionaryEntry

Represents one entry in a static dictionary.

message DictionaryEntry {
optional string key_token = 1;
optional string class_id = 2;
optional float value = 3;
repeated string value_tokens = 4;
optional FloatArray values = 5;
optional int32 token_count = 6;
optional int32 items_count = 7;

}

DictionaryEntry.key_token
A token that defines the key of the entry.

DictionaryEntry.class_id
The class of the DictionaryEntry.key_token.

DictionaryEntry.value
An optional generic value, associated with the entry. The meaning of this value depends on the usage of the
dictionary.

DictionaryEntry.token_count
An optional value, indicating the overall number of token occurrences in some collection.

DictionaryEntry.items_count
An optional value, indicating the overall number of documents containing the token.

10.7.19 ScoreConfig

class messages_pb2.ScoreConfig

Represents a configuration of a general score.

message ScoreConfig {
enum Type {
Perplexity = 0;
SparsityTheta = 1;
SparsityPhi = 2;
ItemsProcessed = 3;
TopTokens = 4;
ThetaSnippet = 5;
TopicKernel = 6;

}

optional string name = 1;
optional Type type = 2;
optional bytes config = 3;

}

62 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

ScoreConfig.name
A value that defines the name of the score. The name must be unique across all names defined in the master
component.

ScoreConfig.type
A value that defines the type of the score.

Perplexity Defines a config of the Perplexity score
SparsityTheta Defines a config of the SparsityTheta score
SparsityPhi Defines a config of the SparsityPhi score
ItemsProcessed Defines a config of the ItemsProcessed score
TopTokens Defines a config of the TopTokens score
ThetaSnippet Defines a config of the ThetaSnippet score
TopicKernel Defines a config of the TopicKernel score

ScoreConfig.config
A serialized protobuf message that describes score config for the specific score type.

10.7.20 ScoreData

class messages_pb2.ScoreData

Represents a general result of score calculation.

message ScoreData {
enum Type {
Perplexity = 0;
SparsityTheta = 1;
SparsityPhi = 2;
ItemsProcessed = 3;
TopTokens = 4;
ThetaSnippet = 5;
TopicKernel = 6;

}

optional string name = 1;
optional Type type = 2;
optional bytes data = 3;

}

ScoreData.name
A value that describes the name of the score. This name will match the name of the corresponding score config.

ScoreData.type
A value that defines the type of the score.

Perplexity Defines a Perplexity score data
SparsityTheta Defines a SparsityTheta score data
SparsityPhi Defines a SparsityPhi score data
ItemsProcessed Defines a ItemsProcessed score data
TopTokens Defines a TopTokens score data
ThetaSnippet Defines a ThetaSnippet score data
TopicKernel Defines a TopicKernel score data

ScoreData.data
A serialized protobuf message that provides the specific score result.

10.7. Messages 63



BigARTM Documentation, Release 1.0

10.7.21 PerplexityScoreConfig

class messages_pb2.PerplexityScoreConfig

Represents a configuration of a perplexity score.

message PerplexityScoreConfig {
enum Type {
UnigramDocumentModel = 0;
UnigramCollectionModel = 1;

}

optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];
optional Type model_type = 3 [default = UnigramDocumentModel];
optional string dictionary_name = 4;
optional float theta_sparsity_eps = 5 [default = 1e-37];
repeated string theta_sparsity_topic_name = 6;

}

PerplexityScoreConfig.field_name
Obsolete in BigARTM v0.5.8

PerplexityScoreConfig.stream_name
A value that defines which stream should be used in perplexity calculation.

10.7.22 PerplexityScore

class messages_pb2.PerplexityScore

Represents a result of calculation of a perplexity score.

message PerplexityScore {
optional double value = 1;
optional double raw = 2;
optional double normalizer = 3;
optional int32 zero_words = 4;
optional double theta_sparsity_value = 5;
optional int32 theta_sparsity_zero_topics = 6;
optional int32 theta_sparsity_total_topics = 7;

}

PerplexityScore.value
A perplexity value which is calculated as exp(-raw/normalizer).

PerplexityScore.raw
A numerator of perplexity calculation. This value is equal to the likelihood of the topic model.

PerplexityScore.normalizer
A denominator of perplexity calculation. This value is equal to the total number of tokens in all processed items.

PerplexityScore.zero_words
A number of tokens that have zero probability p(w|t,d) in a document. Such tokens are evaluated based on to
unigram document model or unigram colection model.

PerplexityScore.theta_sparsity_value
A fraction of zero entries in the theta matrix.

64 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

10.7.23 SparsityThetaScoreConfig

class messages_pb2.SparsityThetaScoreConfig

Represents a configuration of a theta sparsity score.

message SparsityThetaScoreConfig {
optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];
optional float eps = 3 [default = 1e-37];
repeated string topic_name = 4;

}

SparsityThetaScoreConfig.field_name
Obsolete in BigARTM v0.5.8

SparsityThetaScoreConfig.stream_name
A value that defines which stream should be used in theta sparsity calculation.

SparsityThetaScoreConfig.eps
A small value that defines zero threshold for theta probabilities. Theta values below the threshold will be counted
as zeros when calculating theta sparsity score.

SparsityThetaScoreConfig.topic_name
A set of topic names that defines which topics should be used for score calculation. The names correspond to
ModelConfig.topic_name. This value is optional, use an empty list to calculate the score for all topics.

10.7.24 SparsityThetaScore

class messages_pb2.SparsityThetaScoreConfig

Represents a result of calculation of a theta sparsity score.

message SparsityThetaScore {
optional double value = 1;
optional int32 zero_topics = 2;
optional int32 total_topics = 3;

}

SparsityThetaScore.value
A value of theta sparsity that is calculated as zero_topics / total_topics.

SparsityThetaScore.zero_topics
A numerator of theta sparsity score. A number of topics that have zero probability in a topic-item distribution.

SparsityThetaScore.total_topics
A denominator of theta sparsity score. A total number of topics in a topic-item distributions that are used in
theta sparsity calculation.

10.7.25 SparsityPhiScoreConfig

class messages_pb2.SparsityPhiScoreConfig

Represents a configuration of a sparsity phi score.

message SparsityPhiScoreConfig {
optional float eps = 1 [default = 1e-37];
optional string class_id = 2;

10.7. Messages 65



BigARTM Documentation, Release 1.0

repeated string topic_name = 3;
}

SparsityPhiScoreConfig.eps
A small value that defines zero threshold for phi probabilities. Phi values below the threshold will be counted
as zeros when calculating phi sparsity score.

SparsityPhiScoreConfig.class_id
A value that defines the class of tokens to use for score calculation. This value corresponds to
ModelConfig.class_id field. This value is optional. By default the score will be calculated for the
default class (‘@default_class‘).

SparsityPhiScoreConfig.topic_name
A set of topic names that defines which topics should be used for score calculation. This value is optional, use
an empty list to calculate the score for all topics.

10.7.26 SparsityPhiScore

class messages_pb2.SparsityPhiScore

Represents a result of calculation of a phi sparsity score.

message SparsityPhiScore {
optional double value = 1;
optional int32 zero_tokens = 2;
optional int32 total_tokens = 3;

}

SparsityPhiScore.value
A value of phi sparsity that is calculated as zero_tokens / total_tokens.

SparsityPhiScore.zero_tokens
A numerator of phi sparsity score. A number of tokens that have zero probability in a token-topic distribution.

SparsityPhiScore.total_tokens
A denominator of phi sparsity score. A total number of tokens in a token-topic distributions that are used in phi
sparsity calculation.

10.7.27 ItemsProcessedScoreConfig

class messages_pb2.ItemsProcessedScoreConfig

Represents a configuration of an items processed score.

message ItemsProcessedScoreConfig {
optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];

}

ItemsProcessedScoreConfig.field_name
Obsolete in BigARTM v0.5.8

ItemsProcessedScoreConfig.stream_name
A value that defines which stream should be used in calculation of processed items.

66 Chapter 10. Legacy documentation pages

mailto:'@default_class


BigARTM Documentation, Release 1.0

10.7.28 ItemsProcessedScore

class messages_pb2.ItemsProcessedScore

Represents a result of calculation of an items processed score.

message ItemsProcessedScore {
optional int32 value = 1;

}

ItemsProcessedScore.value
A number of items that belong to the stream ItemsProcessedScoreConfig.stream_name and have
been processed during iterations. Currently this number is aggregated throughout all iterations.

10.7.29 TopTokensScoreConfig

class messages_pb2.TopTokensScoreConfig

Represents a configuration of a top tokens score.

message TopTokensScoreConfig {
optional int32 num_tokens = 1 [default = 10];
optional string class_id = 2;
repeated string topic_name = 3;

}

TopTokensScoreConfig.num_tokens
A value that defines how many top tokens should be retrieved for each topic.

TopTokensScoreConfig.class_id
A value that defines for which class of the model to collect top tokens. This value corresponds to
ModelConfig.class_id field.

This parameter is optional. By default tokens will be retrieved for the default class (‘@default_class‘).

TopTokensScoreConfig.topic_name
A set of values that represent the names of the topics to include in the result. The names correspond to
ModelConfig.topic_name.

This parameter is optional. By default top tokens will be calculated for all topics in the model.

10.7.30 TopTokensScore

class messages_pb2.TopTokensScore

Represents a result of calculation of a top tokens score.

message TopTokensScore {
optional int32 num_entries = 1;
repeated string topic_name = 2;
repeated int32 topic_index = 3;
repeated string token = 4;
repeated float weight = 5;

}

The data in this score is represented in a table-like format. sorted on topic_index. The following code block gives a
typical usage example. The loop below is guarantied to process all top-N tokens for the first topic, then for the second
topic, etc.

10.7. Messages 67

mailto:'@default_class


BigARTM Documentation, Release 1.0

for (int i = 0; i < top_tokens_score.num_entries(); i++) {
// Gives a index from 0 to (model_config.topics_size() - 1)
int topic_index = top_tokens_score.topic_index(i);

// Gives one of the topN tokens for topic 'topic_index'
std::string token = top_tokens_score.token(i);

// Gives the weight of the token
float weight = top_tokens_score.weight(i);

}

TopTokensScore.num_entries
A value indicating the overall number of entries in the score. All the remaining repeated fiels in this score will
have this length.

TopTokensScore.token
A repeated field of num_entries elements, containing tokens with high probability.

TopTokensScore.weight
A repeated field of num_entries elements, containing the p(t|w) probabilities.

TopTokensScore.topic_index
A repeated field of num_entries elements, containing integers between 0 and
(ModelConfig.topics_count - 1).

TopTokensScore.topic_name
A repeated field of num_entries elements, corresponding to the values of ModelConfig.topic_name
field.

10.7.31 ThetaSnippetScoreConfig

class messages_pb2.ThetaSnippetScoreConfig

Represents a configuration of a theta snippet score.

message ThetaSnippetScoreConfig {
optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];
repeated int32 item_id = 3 [packed = true]; // obsolete in BigARTM v0.5.8
optional int32 item_count = 4 [default = 10];

}

ThetaSnippetScoreConfig.field_name
Obsolete in BigARTM v0.5.8

ThetaSnippetScoreConfig.stream_name
A value that defines which stream should be used in calculation of a theta snippet.

ThetaSnippetScoreConfig.item_id
Obsolete in BigARTM v0.5.8.

ThetaSnippetScoreConfig.item_count
The number of items to retrieve. ThetaSnippetScore will select last item_count processed items and return their
theta vectors.

10.7.32 ThetaSnippetScore

class messages_pb2.ThetaSnippetScore

68 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

Represents a result of calculation of a theta snippet score.

message ThetaSnippetScore {
repeated int32 item_id = 1;
repeated FloatArray values = 2;

}

ThetaSnippetScore.item_id
A set of item ids for which theta snippet have been calculated. Items are identified by the item id.

ThetaSnippetScore.values
A set of values that define topic probabilities for each item. The length of these repeated values will match the
number of item ids specified in ThetaSnippetScore.item_id. Each repeated field contains float array
of topic probabilities in the natural order of topic ids.

10.7.33 TopicKernelScoreConfig

class messages_pb2.TopicKernelScoreConfig

Represents a configuration of a topic kernel score.

message TopicKernelScoreConfig {
optional float eps = 1 [default = 1e-37];
optional string class_id = 2;
repeated string topic_name = 3;
optional double probability_mass_threshold = 4 [default = 0.1];

}

• Kernel of a topic model is defined as the list of all tokens such that the probability p(t | w) exceeds proba-
bility mass threshold.

• Kernel size of a topic t is defined as the number of tokens in its kernel.

• Topic purity of a topic t is defined as the sum of p(w | t) across all tokens w in the kernel.

• Topic contrast of a topic t is defined as the sum of p(t | w) across all tokens w in the kernel defided by the
size of the kernel.

TopicKernelScoreConfig.eps
Defines the minimum threshold on kernel size. In most cases this parameter should be kept at the default value.

TopicKernelScoreConfig.class_id
A value that defines the class of tokens to use for score calculation. This value corresponds to
ModelConfig.class_id field. This value is optional. By default the score will be calculated for the
default class (‘@default_class‘).

TopicKernelScoreConfig.topic_name
A set of topic names that defines which topics should be used for score calculation. This value is optional, use
an empty list to calculate the score for all topics.

TopicKernelScoreConfig.probability_mass_threshold
Defines the probability mass threshold (see the definition of kernel above).

10.7.34 TopicKernelScore

class messages_pb2.TopicKernelScore

Represents a result of calculation of a topic kernel score.

10.7. Messages 69

mailto:'@default_class


BigARTM Documentation, Release 1.0

message TopicKernelScore {
optional DoubleArray kernel_size = 1;
optional DoubleArray kernel_purity = 2;
optional DoubleArray kernel_contrast = 3;
optional double average_kernel_size = 4;
optional double average_kernel_purity = 5;
optional double average_kernel_contrast = 6;

}

TopicKernelScore.kernel_size
Provides the kernel size for all requested topics. The length of this DoubleArray is always equal to the overall
number of topics. The values of -1 correspond to non-calculated topics. The remaining values carry the kernel
size of the requested topics.

TopicKernelScore.kernel_purity
Provides the kernel purity for all requested topics. The length of this DoubleArray is always equal to the overall
number of topics. The values of -1 correspond to non-calculated topics. The remaining values carry the kernel
size of the requested topics.

TopicKernelScore.kernel_contrast
Provides the kernel contrast for all requested topics. The length of this DoubleArray is always equal to the
overall number of topics. The values of -1 correspond to non-calculated topics. The remaining values carry the
kernel contrast of the requested topics.

TopicKernelScore.average_kernel_size
Provides the average kernel size across all the requested topics.

TopicKernelScore.average_kernel_purity
Provides the average kernel purity across all the requested topics.

TopicKernelScore.average_kernel_contrast
Provides the average kernel contrast across all the requested topics.

10.7.35 TopicModel

class messages_pb2.TopicModel

Represents a topic model. This message can contain data in either dense or sparse format. The key idea be-
hind sparse format is to avoid storing zero p(w|t) elements of the Phi matrix. Please refer to the description of
TopicModel.topic_index field for more details.

To distinguish between these two formats check whether repeated field TopicModel.topic_index is empty.
An empty field indicate a dense format, otherwise the message contains data in a sparse format. To request
topic model in a sparse format set GetTopicModelArgs.use_sparse_format field to True when calling
ArtmRequestTopicModel().

message TopicModel {
enum OperationType {
Initialize = 0;
Increment = 1;
Overwrite = 2;
Remove = 3;
Ignore = 4;

}

optional string name = 1 [default = "@model"];
optional int32 topics_count = 2;
repeated string topic_name = 3;

70 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

repeated string token = 4;
repeated FloatArray token_weights = 5;
repeated string class_id = 6;

message TopicModelInternals {
repeated FloatArray n_wt = 1;
repeated FloatArray r_wt = 2;

}

optional bytes internals = 7; // obsolete in BigARTM v0.6.3
repeated IntArray topic_index = 8;
repeated OperationType operation_type = 9;

}

TopicModel.name
A value that describes the name of the topic model (TopicModel.name).

TopicModel.topics_count
A value that describes the number of topics in this message.

TopicModel.topic_name
A value that describes the names of the topics included in given TopicModel message. This values will rep-
resent a subset of topics, defined by GetTopicModelArgs.topic_name message. In case of empty
GetTopicModelArgs.topic_name this values will correspond to the entire set of topics, defined in
ModelConfig.topic_name field.

TopicModel.token
The set of all tokens, included in the topic model.

TopicModel.token_weights
A set of token weights. The length of this repeated field will match the length of the repeated field
TopicModel.token. The length of each FloatArray will match the TopicModel.topics_count field
(in dense representation), or the length of the corresponding IntArray from TopicModel.topic_index
field (in sparse representation).

TopicModel.class_id
A set values that specify the class (modality) of the tokens. The length of this repeated field will match the
length of the repeated field TopicModel.token.

TopicModel.internals
Obsolete in BigARTM v0.6.3.

TopicModel.topic_index
A repeated field used for sparse topic model representation. This field has the same length as
TopicModel.token, TopicModel.class_id and TopicModel.token_weights. Each element
in topic_index is an instance of IntArray message, containing a list of values between 0 and the length of
TopicModel.topic_name field. This values correspond to the indices in TopicModel.topic_name
array, and tell which topics has non-zero p(w|t) probabilities for a given token. The actual p(w|t)
values can be found in TopicModel.token_weights field. The length of each IntArray message
in TopicModel.topic_index field equals to the length of the corresponding FloatArray message in
TopicModel.token_weights field.

Warning: Be careful with TopicModel.topic_index when this message represents a subset of top-
ics, defined by GetTopicModelArgs.topic_name. In this case indices correspond to the selected
subset of topics, which might not correspond to topic indices in the original ModelConfig message.

TopicModel.operation_type
A set of values that define operation to perform on each token when topic model is used as an argument of

10.7. Messages 71



BigARTM Documentation, Release 1.0

ArtmOverwriteTopicModel().

InitializeIndicates that a new token should be added to the topic model. Initial n_wt counter will be
initialized with random value from [0, 1] range. TopicModel.token_weights is
ignored. This operation is ignored if token already exists.

IncrementIndicates that n_wt counter of the token should be increased by values, specified in
TopicModel.token_weights field. A new token will be created if it does not exist yet.

OverwriteIndicates that n_wt counter of the token should be set to the value, specified in
TopicModel.token_weights field. A new token will be created if it does not exist yet.

Remove Indicates that the token should be removed from the topic model.
TopicModel.token_weights is ignored.

Ignore Indicates no operation for the token. The effect is the same as if the token is not present in this
message.

10.7.36 ThetaMatrix

class messages_pb2.ThetaMatrix

Represents a theta matrix. This message can contain data in either dense or sparse format. The key idea behind
sparse format is to avoid storing zero p(t|d) elements of the Theta matrix. Sparse representation of Theta matrix
is equivalent to sparse representation of Phi matrix. Please, refer to TopicModel for detailed description of the sparse
format.

message ThetaMatrix {
optional string model_name = 1 [default = "@model"];
repeated int32 item_id = 2;
repeated FloatArray item_weights = 3;
repeated string topic_name = 4;
optional int32 topics_count = 5;
repeated string item_title = 6;
repeated IntArray topic_index = 7;

}

ThetaMatrix.model_name
A value that describes the name of the topic model. This name will match the name of the corresponding model
config.

ThetaMatrix.item_id
A set of item IDs corresponding to Item.id values.

ThetaMatrix.item_weights
A set of item ID weights. The length of this repeated field will match the length of
the repeated field ThetaMatrix.item_id. The length of each FloatArray will match the
ThetaMatrix.topics_count field (in dense representation), or the length of the corresponding IntAr-
ray from ThetaMatrix.topic_index field (in sparse representation).

ThetaMatrix.topic_name
A value that describes the names of the topics included in given ThetaMatrix message. This values will rep-
resent a subset of topics, defined by GetThetaMatrixArgs.topic_name message. In case of empty
GetTopicModelArgs.topic_name this values will correspond to the entire set of topics, defined in
ModelConfig.topic_name field.

ThetaMatrix.topics_count
A value that describes the number of topics in this message.

ThetaMatrix.item_title
A set of item titles, corresponding to Item.title values. Beware that this field might be empty (e.g. of zero
length) if all items did not have title specified in Item.title.

72 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

ThetaMatrix.topic_index
A repeated field used for sparse theta matrix representation. This field has the same length as
ThetaMatrix.item_id, ThetaMatrix.item_weights and ThetaMatrix.item_title. Each
element in topic_index is an instance of IntArray message, containing a list of values between 0 and the length of
TopicModel.topic_name field. This values correspond to the indices in ThetaMatrix.topic_name
array, and tell which topics has non-zero p(t|d) probabilities for a given item. The actual p(t|d)
values can be found in ThetaMatrix.item_weights field. The length of each IntArray message in
ThetaMatrix.topic_index field equals to the length of the corresponding FloatArray message in
ThetaMatrix.item_weights field.

Warning: Be careful with ThetaMatrix.topic_index when this message represents a subset of
topics, defined by GetThetaMatrixArgs.topic_name. In this case indices correspond to the selected
subset of topics, which might not correspond to topic indices in the original ModelConfig message.

10.7.37 CollectionParserConfig

class messages_pb2.CollectionParserConfig

Represents a configuration of a collection parser.

message CollectionParserConfig {
enum Format {
BagOfWordsUci = 0;
MatrixMarket = 1;

}

optional Format format = 1 [default = BagOfWordsUci];
optional string docword_file_path = 2;
optional string vocab_file_path = 3;
optional string target_folder = 4;
optional string dictionary_file_name = 5;
optional int32 num_items_per_batch = 6 [default = 1000];
optional string cooccurrence_file_name = 7;
repeated string cooccurrence_token = 8;
optional bool use_unity_based_indices = 9 [default = true];

}

CollectionParserConfig.format
A value that defines the format of a collection to be parsed.

10.7. Messages 73



BigARTM Documentation, Release 1.0

BagOfWordsUci

A bag-of-words collection, stored in UCI format.
UCI format must have two files - vocab.*.txt
and docword.*.txt, defined by
docword_file_path

and vocab_file_path.
The format of the docword.*.txt file is 3 header
lines, followed by NNZ triples:

D
W
NNZ
docID wordID count
docID wordID count
...
docID wordID count

The file must be sorted on docID.
Values of wordID must be unity-based (not
zero-based).
The format of the vocab.*.txt file is line containing
wordID=n.
Note that words must not have spaces or tabs.
In vocab.*.txt file it is also possible to specify
Batch.class_id for tokens, as it is shown in
this example:

token1 @default_class
token2 custom_class
token3 @default_class
token4

Use space or tab to separate token from its class.
Token that are not followed by class label
automatically
get ‘’@default_class‘’ as a lable (see ‘’token4” in
the example).

MatrixMarket

See the description at
http://math.nist.gov/MatrixMarket/formats.html
In this mode parameter docword_file_path
must refer to a file
in Matrix Market format. Parameter
vocab_file_path

is also required and must refer to a dictionary file
exported in
gensim format (dictionary.save_as_text()).

CollectionParserConfig.docword_file_path

74 Chapter 10. Legacy documentation pages

mailto:''@default_class
http://math.nist.gov/MatrixMarket/formats.html
http://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.save_as_text


BigARTM Documentation, Release 1.0

A value that defines the disk location of a docword.*.txt file (the bag of words file in sparse format).

CollectionParserConfig.vocab_file_path
A value that defines the disk location of a vocab.*.txt file (the file with the vocabulary of the collection).

CollectionParserConfig.target_folder
A value that defines the disk location where to stores all the results after parsing the colleciton. Usu-
ally the resulting location will contain a set of batches, and a DictionaryConfig that contains all
unique tokens occured in the collection. Such location can be further passed MasterComponent via
MasterComponentConfig.disk_path.

CollectionParserConfig.dictionary_file_name
A file name where to save the DictionaryConfig message that contains all unique tokens occured in the collec-
tion. The file will be created in target_folder.

This parameter is optional. The dictionary will be still collected even when this parameter is not provided, but
the resulting dictionary will be only returned as the result of ArtmRequestParseCollection, but it will not be
stored to disk.

In the resulting dictionary each entry will have the following fields:

•DictionaryEntry.key_token - the textual representation of the token,

•DictionaryEntry.class_id - the label of the default class (“@DefaultClass”),

•DictionaryEntry.token_count - the overall number of occurrences of the token in the collection,

•DictionaryEntry.items_count - the number of documents in the collection, containing the token.

•DictionaryEntry.value - the ratio between token_count and total_token_count.

Use ArtmRequestLoadDictionary method to load the resulting dictionary.

CollectionParserConfig.num_items_per_batch
A value indicating the desired number of items per batch.

CollectionParserConfig.cooccurrence_file_name
A file name where to save the DictionaryConfig message that contains information about co-occurrence of all
pairs of tokens in the collection. The file will be created in target_folder.

This parameter is optional. No cooccurrence information will be collected if the filename is not provided.

In the resulting dictionary each entry will correspond to two tokens (‘<first>’ and ‘<second>’), and carry the
information about co-occurrence of this tokens in the collection.

•DictionaryEntry.key_token - a string of the form ‘<first>~<second>’, produced by concatena-
tion of two tokens together via the tilde symbol (‘~’). <first> tokens is guarantied lexicographic less than
the <second> token.

•DictionaryEntry.class_id - the label of the default class (“@DefaultClass”).

•DictionaryEntry.items_count - the number of documents in the collection, containing both to-
kens (‘<first>’ and ‘<second>’)

Use ArtmRequestLoadDictionary method to load the resulting dictionary.

CollectionParserConfig.cooccurrence_token
A list of tokens to collect cooccurrence information. A cooccurrence of the pair <first>~<second> will be
collected only when both tokens are present in CollectionParserConfig.cooccurrence_token.

CollectionParserConfig.use_unity_based_indices
A flag indicating whether to interpret indices in docword file as unity-based or as zero-based. By default
‘use_unity_based_indices = True‘, as required by UCI bag-of-words format.

10.7. Messages 75



BigARTM Documentation, Release 1.0

10.7.38 SynchronizeModelArgs

class messages_pb2.SynchronizeModelArgs

Represents an argument of synchronize model operation.

message SynchronizeModelArgs {
optional string model_name = 1;
optional float decay_weight = 2 [default = 0.0];
optional bool invoke_regularizers = 3 [default = true];
optional float apply_weight = 4 [default = 1.0];

}

SynchronizeModelArgs.model_name
The name of the model to be synchronized. This value is optional. When not set, all models will be synchronized
with the same decay weight.

SynchronizeModelArgs.decay_weight
The decay weight and apply_weight define how to combine existing topic model with all increments, cal-
culated since the last ArtmSynchronizeModel(). This is best described by the following formula:

n_wt_new = n_wt_old * decay_weight + n_wt_inc * apply_weight,

where n_wt_old describe current topic model, n_wt_inc describe increment calculated since last
ArtmSynchronizeModel(), n_wt_new define the resulting topic model.

Expected values of both parameters are between 0.0 and 1.0. Here are some examples:

•Combination of decay_weight=0.0 and apply_weight=1.0 states that the previous Phi matrix of the topic
model will be disregarded completely, and the new Phi matrix will be formed based on new increments
gathered since last model synchronize.

•Combination of decay_weight=1.0 and apply_weight=1.0 states that new increments will be appended to
the current Phi matrix without any decay.

•Combination of decay_weight=1.0 and apply_weight=0.0 states that new increments will be disregarded,
and current Phi matrix will stay unchanged.

•To reproduce Online variational Bayes for LDA algorighm by Matthew D. Hoffman set decay_weight = 1
- rho and apply_weight = rho, where parameter rho is defined as rho = exp(tau + t, -kappa). See Online
Learning for Latent Dirichlet Allocation for further details.

SynchronizeModelArgs.apply_weight
See decay_weight for the description.

SynchronizeModelArgs.invoke_regularizers
A flag indicating whether to invoke all phi-regularizers.

10.7.39 InitializeModelArgs

class messages_pb2.InitializeModelArgs

Represents an argument of ArtmInitializeModel() operation. Please refer to exam-
ple14_initialize_topic_model.py for further information.

message InitializeModelArgs {
enum SourceType {
Dictionary = 0;
Batches = 1;

}

76 Chapter 10. Legacy documentation pages

https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example14_initialize_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example14_initialize_topic_model.py


BigARTM Documentation, Release 1.0

message Filter {
optional string class_id = 1;
optional float min_percentage = 2;
optional float max_percentage = 3;
optional int32 min_items = 4;
optional int32 max_items = 5;
optional int32 min_total_count = 6;
optional int32 min_one_item_count = 7;

}

optional string model_name = 1;
optional string dictionary_name = 2;
optional SourceType source_type = 3 [default = Dictionary];

optional string disk_path = 4;
repeated Filter filter = 5;

}

InitializeModelArgs.model_name
The name of the model to be initialized.

InitializeModelArgs.dictionary_name
The name of the dictionary containing all tokens that should be initialized.

10.7.40 GetTopicModelArgs

Represents an argument of ArtmRequestTopicModel() operation.

message GetTopicModelArgs {
enum RequestType {
Pwt = 0;
Nwt = 1;

}

optional string model_name = 1;
repeated string topic_name = 2;
repeated string token = 3;
repeated string class_id = 4;
optional bool use_sparse_format = 5;
optional float eps = 6 [default = 1e-37];
optional RequestType request_type = 7 [default = Pwt];

}

GetTopicModelArgs.model_name
The name of the model to be retrieved.

GetTopicModelArgs.topic_name
The list of topic names to be retrieved. This value is optional. When not provided, all topics will be retrieved.

GetTopicModelArgs.token
The list of tokens to be retrieved. The length of this field must match the length of class_id field. This field
is optional. When not provided, all tokens will be retrieved.

GetTopicModelArgs.class_id
The list of classes corresponding to all tokens. The length of this field must match the length of token field.
This field is only required together with token, otherwise it is ignored.

GetTopicModelArgs.use_sparse_format
An optional flag that defines whether to use sparse format for the resulting TopicModel message. See

10.7. Messages 77



BigARTM Documentation, Release 1.0

TopicModelmessage for additional information about the sparse format. Note that setting use_sparse_format
= true results in empty TopicModel.internals field.

GetTopicModelArgs.eps
A small value that defines zero threshold for p(w|t) probabilities. This field is only used in sparse format.
p(w|t) below the threshold will be excluded from the resulting Phi matrix.

GetTopicModelArgs.request_type
An optional value that defines what kind of data to retrieve in this operation.

Pwt Indicates that the resulting TopicModel message should contain p(w|t) probabilities. This values
are normalized to form a probability distribution (sum_w p(w|t) = 1 for all topics t).

Nwt Indicates that the resulting TopicModel message should contain internal n_wt counters of the topic
model. This values represent an internal state of the topic model.

Default setting is to retrieve p(w|t) probabilities. This probabilities are sufficient to infer p(t|d) distribu-
tions using this topic model.

n_wt counters allow you to restore the precise state of the topic model. By passing this values in
ArtmOverwriteTopicModel() operation you are guarantied to get the model in the same state as you
retrieved it. As the result you may continue topic model inference from the point you have stopped it last time.

p(w|t) values can be also restored via c:func:ArtmOverwriteTopicModel operation. The resulting model will
give the same p(t|d) distributions, however you should consider this model as read-only, and do not call
ArtmSynchronizeModel() on it.

10.7.41 GetThetaMatrixArgs

Represents an argument of ArtmRequestThetaMatrix() operation.

message GetThetaMatrixArgs {
optional string model_name = 1;
optional Batch batch = 2;
repeated string topic_name = 3;
repeated int32 topic_index = 4;
optional bool clean_cache = 5 [default = false];
optional bool use_sparse_format = 6 [default = false];
optional float eps = 7 [default = 1e-37];

}

GetThetaMatrixArgs.model_name
The name of the model to retrieved theta matrix for.

GetThetaMatrixArgs.batch
The Batch to classify with the model.

GetThetaMatrixArgs.topic_name
The list of topic names, describing which topics to include in the Theta matrix. The values of this field should
correspond to values in ModelConfig.topic_name. This field is optional, by default all topics will be
included.

GetThetaMatrixArgs.topic_index
The list of topic indices, describing which topics to include in the Theta matrix. The values of this field should
be an integers between 0 and (ModelConfig.topics_count - 1). This field is optional, by default all
topics will be included.

Note that this field acts similar to GetThetaMatrixArgs.topic_name. It is not allowed to specify both
topic_index and topic_name at the same time. The recommendation is to use topic_name.

78 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

GetThetaMatrixArgs.clean_cache
An optional flag that defines whether to clear the theta matrix cache after this operation. Setting this value to
True will clear the cache for a topic model, defined by GetThetaMatrixArgs.model_name. This value
is only applicable when MasterComponentConfig.cache_theta is set to True.

GetThetaMatrixArgs.use_sparse_format
An optional flag that defines whether to use sparse format for the resulting ThetaMatrix message. See
ThetaMatrix message for additional information about the sparse format.

GetThetaMatrixArgs.eps
A small value that defines zero threshold for p(t|d) probabilities. This field is only used in sparse format.
p(t|d) below the threshold will be excluded from the resulting Theta matrix.

10.7.42 GetScoreValueArgs

Represents an argument of get score operation.

message GetScoreValueArgs {
optional string model_name = 1;
optional string score_name = 2;
optional Batch batch = 3;

}

GetScoreValueArgs.model_name
The name of the model to retrieved score for.

GetScoreValueArgs.score_name
The name of the score to retrieved.

GetScoreValueArgs.batch
The Batch to calculate the score. This option is only applicable to cumulative scores. When not provided the
score will be reported for all batches processed since last ArtmInvokeIteration().

10.7.43 AddBatchArgs

Represents an argument of ArtmAddBatch() operation.

message AddBatchArgs {
optional Batch batch = 1;
optional int32 timeout_milliseconds = 2 [default = -1];
optional bool reset_scores = 3 [default = false];
optional string batch_file_name = 4;

}

AddBatchArgs.batch
The Batch to add.

AddBatchArgs.timeout_milliseconds
Timeout in milliseconds for this operation.

AddBatchArgs.reset_scores
An optional flag that defines whether to reset all scores before this operation.

AddBatchArgs.batch_file_name
An optional value that defines disk location of the batch to add. You must choose between parameters
batch_file_name or batch (either of them has to be specified, but not both at the same time).

10.7. Messages 79



BigARTM Documentation, Release 1.0

10.7.44 InvokeIterationArgs

Represents an argument of ArtmInvokeIteration() operation.

message InvokeIterationArgs {
optional int32 iterations_count = 1 [default = 1];
optional bool reset_scores = 2 [default = true];
optional string disk_path = 3;

}

InvokeIterationArgs.iterations_count
An integer value describing how many iterations to invoke.

InvokeIterationArgs.reset_scores
An optional flag that defines whether to reset all scores before this operation.

InvokeIterationArgs.disk_path
A value that defines the disk location with batches to process on this iteration.

10.7.45 WaitIdleArgs

Represents an argument of ArtmWaitIdle() operation.

message WaitIdleArgs {
optional int32 timeout_milliseconds = 1 [default = -1];

}

WaitIdleArgs.timeout_milliseconds
Timeout in milliseconds for this operation.

10.7.46 ExportModelArgs

Represents an argument of ArtmExportModel() operation.

message ExportModelArgs {
optional string file_name = 1;
optional string model_name = 2;

}

ExportModelArgs.file_name
A target file name where to store topic model.

ExportModelArgs.model_name
A value that describes the name of the topic model. This name will match the name of the corresponding model
config.

10.7.47 ImportModelArgs

Represents an argument of ArtmImportModel() operation.

message ImportModelArgs {
optional string file_name = 1;
optional string model_name = 2;

}

ImportModelArgs.file_name
A target file name from where to load topic model.

80 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

ImportModelArgs.model_name
A value that describes the name of the topic model. This name will match the name of the corresponding model
config.

10.8 Python Interface

This document explains all classes in python interface of BigARTM library.

10.8.1 Library

class artm.library.Library(artm_shared_library = “”)
Creates an ArtmLibrary object, wrapping the BigARTM shared library.

The artm_shared_library is an optional argument, which provides full file name of artm shared library (a
disk path plus artm.dll on Windows or artm.so on Linux). When artm_shared_library is not speci-
fied the shared library will be searched in folders listed in PATH system variable. You may also configure
ARTM_SHARED_LIBRARY system variable to provide full file name of artm shared library.

CreateMasterComponent(config = None)
Creates and returns an instance of MasterComponent class. config defines an optional MasterCompo-
nentConfig parameter that may carry the configuration of the master component.

SaveBatch(batch, disk_path)
Saves a given Batch into a disk location specified by disk_path.

ParseCollection(collection_parser_config)
Parses a text collection as defined by collection_parser_config (CollectionParserConfig). Returns an in-
stance of DictionaryConfig which carry all unique words in the collection and their frequencies.

For more information refer to ArtmRequestParseCollection() and
ArtmRequestLoadDictionary().

LoadDictionary(full_filename)
Loads a DictionaryConfig from the file, defined by full_filename argument.

For more information refer to ArtmRequestLoadDictionary().

LoadBatch(full_filename)
Loads a Batch from the file, defined by full_filename argument.

For more information refer to ArtmRequestLoadBatch().

ParseCollectionOrLoadDictionary(docword_file_path, vocab_file_path, target_folder)
A simple helper method that runs ParseCollection() when target_folder is empty, otherwise tried
to use LoadDictionary() to load the dictionary from target_folder.

The docword_file_path and vocab_file_path arguments should provide the disk location of docword and
vocab files of the collection to be parsed.

10.8.2 MasterComponent

class artm.library.MasterComponent(config = None, lib = None, disk_path = None)
Creates a master component.

config is an optional instance of MasterComponentConfig, providing an initial configuration of the master com-
ponent.

10.8. Python Interface 81



BigARTM Documentation, Release 1.0

lib is an optional argument pointing to Library . When not specified, a default library will be used. Check the
constructor of Library for more details.

disk_path is an optional value providing the disk folder with batches to process by this master component.
Changing disk_path is not supported (you must recreate a new instance MasterComponent to do so). Use
InvokeIteration() will process all batches, located under disk_path. Alternatively use AddBatch() to
add a specific batch into processor queue.

Dispose()
Disposes the master component and releases all unmanaged resources.

config()
Returns current MasterComponentConfig of the master component.

CreateModel(config=None, topics_count=None, inner_iterations_count=None, class_ids=None, class_weights=None,
topic_names=None, use_sparse_format=None, request_type=None)

Creates and returns an instance of Model class based on a given ModelConfig. Note that the model has
to be further tuned by several iterative scans over the text collection. Use InvokeIteration() to
perform such scans.

All parameters will override values, specifed in config.

RemoveModel(model)
Removes an instance of Model from the master component. After this operation the model object became
invalid and must not be used.

CreateRegularizer(name, type, config)
Creates and returns an instance of Regularizer component. name can be any unique identifier, that you
can further use to identify regularizer (for example, in ModelConfig.regularizer_name). type can
be any regularizer type (for example, the RegularizerConfig_Type_DirichletTheta). config
can be any regularizer config (for example, a SmoothSparseThetaConfig).

CreateSmoothSparseThetaRegularizer(name = None, config = None)
Creates an instance of SmoothSparseThetaRegularizer. config is an optional argument of SmoothSparse-
ThetaConfig type.

CreateSmoothSparsePhiRegularizer(name = None, config = None, topic_names=None,
class_ids=None)

Creates an instance of SmoothSparsePhiRegularizer. config is an optional argument of SmoothSparsePh-
iConfig type.

CreateDecorrelatorPhiRegularizer(name = None, config = None, topic_names=None,
class_ids=None)

Creates an instance of DecorrelatorPhiRegularizer. config is an optional argument of DecorrelatorPhiCon-
fig type.

RemoveRegularizer(regularizer)
Removes an instance of Regularizer from the master component. After this operation the regularizer
object became invalid and must not be used.

CreateScore(name, type, config)
Creates a score calculator inside the master component. name can be any unique identifier, that you
can further use to identify the score (for example, in ModelConfig.score_name). type can be any
score type (for example, the ScoreConfig_Type_Perplexity). config can be any score config (for
example, a PerplexityScoreConfig).

CreatePerplexityScore(self, name = None, config = None, stream_name = None,
class_ids=None)

Creates an instance of PerplexityScore. config is an optional argument of PerplexityScoreConfig type.

82 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

CreateSparsityThetaScore(self, name = None, config = None, topic_names=None)
Creates an instance of SparsityThetaScore. config is an optional argument of SparsityThetaScoreConfig
type.

CreateSparsityPhiScore(self, name = None, config = None, topic_names=None,
class_id=None)

Creates an instance of SparsityPhiScore. config is an optional argument of SparsityPhiScoreConfig type.

CreateItemsProcessedScore(self, name = None, config = None)
Creates an instance of ItemsProcessedScore. config is an optional argument of ItemsProcessedScoreConfig
type.

CreateTopTokensScore(self, name = None, config = None, num_tokens = None, class_id = None,
topic_names=None)

Creates an instance of TopTokensScore. config is an optional argument of TopTokensScoreConfig type.

CreateThetaSnippetScore(self, name = None, config = None)
Creates an instance of ThetaSnippetScore. config is an optional argument of ThetaSnippetScoreConfig
type.

CreateTopicKernelScore(self, name = None, config = None, topic_names=None,
class_id=None)

Creates an instance of TopicKernelScore. config is an optional argument of TopicKernelScoreConfig type.

RemoveScore(name)
Removes a score calculator with the specific name from the master component.

CreateDictionary(config)
Creates and returns an instance of Dictionary class component with a specific DictionaryConfig.

RemoveDictionary(dictionary)
Removes an instance of Dictionary from the master component. After this operation the dictionary
object became invalid and must not be used.

Reconfigure(config = None)
Updates the configuration of the master component with new MasterComponentConfig value, provided by
config parameter. Remember that some changes of the configuration are not allowed (for example, the
MasterComponentConfig.disk_path must not change). Such configuration parameters must be
provided in the constructor of MasterComponent.

AddBatch(self, batch = None, batch_filename = None, timeout = None, reset_scores = False,
args=None)

Adds an instance of Batch class to the processor queue. Master component creates a copy of the batch,
so any further changes of the batch object will not be picked up. batch_filename is an alternative to file
with binary-serialized batch (you must use either batch or batch_filename option, but not both at the same
time).

This operation awaits until there is enough space in processor queue. It returns True if await succeeded
within the timeout, otherwise returns False. The provided timeout is in milliseconds. By default it allows
an infinite time for AddBatch() operation.

args is an optional argument of AddBatchArgs type.

InvokeIteration(iterations_count = 1, disk_path = None, args=None)
Invokes several iterations over the collection. The recommended value for iterations_count is 1. disk_path
defines the disk location with batches to process on this iteration. For more iterations use for loop around
InvokeIteration() method. This operation is asynchronous. Use WaitIdle() to await until all
iterations succeeded.

args is an optional argument of InvokeIterationArgs type.

10.8. Python Interface 83



BigARTM Documentation, Release 1.0

WaitIdle(timeout = None, args=None)
Awaits for ongoing iterations. Returns True if iterations had been finished within the timeout, other-
wise returns False. The provided timeout is in milliseconds. Use timeout = -1 to allow infinite time for
WaitIdle() operation. Remember to call Model.Synchronize() operation to synchronize each
model that you are currently processing.

args is an optional argument of WaitIdleArgs type.

CreateStream(stream)
Creates a data stream base on the stream (Stream).

RemoveStream(stream_name)
Removes a stream with the specific name from the master component.

GetTopicModel(model = None, args = None)
Retrieves and returns an instance of TopicModel class, carrying all the data of the topic model (including
the Phi matrix). Parameter model should be an instance of Model class. For more settings use args
parameter (see GetTopicModelArgs for all available options).

GetRegularizerState(regularizer_name)
Retrieves and returns the internal state of a regularizer with the specific name.

GetThetaMatrix(model = None, batch = None, clean_cache = None, args = None)
Retrieves an instance of ThetaMatrix class. The content depends on batch parameter. When batch is
provided, the resulting ThetaMatrix will contain theta values estimated for all documents in the batch.
When batch is not provided, the resulting ThetaMatrix will contain theta values gathered during the last
iteration.

Parameter model should be an instance of Model class. For more settings use args parameter (see Get-
ThetaMatrixArgs for all available options).

When used without batch, this operation require MasterComponentConfig.cache_theta to be
set to True before starting the last iteration. In this case the entire ThetaMatrix must fit into CPU memory,
and for this reason MasterComponentConfig.cache_theta is turned off by default.

10.8.3 Model

class artm.library.Model
This constructor must not be used explicitly. The only correct way of creating a Model is through
MasterComponent.CreateModel() method.

name()
Returns the string name of the model.

Reconfigure(config = None)
Updates the configuration of the topic model with new ModelConfig value, provided by config parame-
ter. When config is not specified the configuration is updated with config() value. Remember that
some changes of the configuration are applied immediately after this call. For example, changes to
ModelConfig.topics_count or ModelConfig.topic_name will be applied only during the
next Synchronize call.

Note that changes ModelConfig.topics_count or ModelConfig.topic_name are only sup-
ported on an idle master component (e.g. in between iterations). Changing these values during an ongoing
iteration may cause unexpected results.

topics_count()
Returns the number of topics in the model.

config()
Returns current ModelConfig of the topic model.

84 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

Synchronize(decay_weight = 0.0, apply_weight = 1.0, invoke_regularizers = True, args=None)
This operation updates the Phi matrix of the topic model with all model increments, collected since the
last call to Synchronize() method. The Phi matrix is calculated according to decay_weight and ap-
ply_weight (refer to SynchronizeModelArgs.decay_weight for more details). Depending on
invoke_regularizers parameter this operation may also invoke all regularizers.

Remember to call Synchronize() operation every time after call
MasterComponent.WaitIdle().

For more settings use args parameter (see SynchronizeModelArgs for all available options).

Initialize(dictionary = None, args=None)
Generates a random initial approximation for the Phi matrix of the topic model.

dictionary must be an instance of Dictionary class.

For more settings use args parameter (see InitializeModelArgs for all available options).

Export(filename)
Exports topic model into a file.

Import(filename)
Imports topic model from a file.

Overwrite(topic_model, commit = True)
Updates the model with new Phi matrix, defined by topic_model (TopicModel). This operation can be used
to provide an explicit initial approximation of the topic model, or to adjust the model in between iterations.

Depending on the commit flag the change can be applied immediately (commit = true) or queued (commit =
false). The default setting is to use commit = true. You may want to use commit = false if your model is too
big to be updated in a single protobuf message. In this case you should split your model into parts, each part
containing subset of all tokens, and then submit each part in separate Overwrite operation with commit =
false. After that remember to call MasterComponent.WaitIdle() and Model.Synchronize()
to propagate your change.

Enable()
Sets ModelConfig.enabled to True for the current topic model. This means that the model will be
updated on MasterComponent.InvokeIteration().

EnableScore(score)
By default model does calculate any scores even if they are created with
MasterComponent.CreateScore(). Method EnableScore tells to the model that score should be
applied to the model. Parameter tau defines the regularization coefficient of the regularizer. score must be
an instance of Score class.

EnableRegularizer(regularizer, tau)
By default model does not use any regularizers even if they are created with
MasterComponent.CreateRegularizer(). Method EnableRegularizer tells to the model
that regularizer should be applied to the model. Parameter tau defines the regularization coefficient of the
regularizer. regularizer must be an instance of Regularizer class.

Disable()
Sets ModelConfig.enabled to False‘ for the current topic model. This means that the model will not
be updated on MasterComponent.InvokeIteration(), but the the scores for the model still will
be collected.

10.8.4 Regularizer

class artm.library.Regularizer
This constructor must not be used explicitly. The only correct way of creating a Regularizer is through

10.8. Python Interface 85



BigARTM Documentation, Release 1.0

MasterComponent.CreateRegularizer() method (or similar methods in MasterComponent
class, dedicated to a particular type of the regularizer).

name()
Returns the string name of the regularizer.

Reconfigure(type, config)
Updates the configuration of the regularizer with new regularizer configuration, provided by config param-
eter. The config object can be, for example, of SmoothSparseThetaConfig type (or similar). The type must
match the current type of the regularizer.

10.8.5 Score

class artm.library.Score
This constructor must not be used explicitly. The only correct way of creating a Score is through
MasterComponent.CreateScore() method (or similar methods in MasterComponent class, dedi-
cated to a particular type of the score).

name()
Returns the string name of the score.

GetValue(model = None, batch = None)
Retrieves the score for a specific model. For cumulative scores such as Perplexity of ThetaSparsity score
it is possible to use batch argument.

10.8.6 Dictionary

class artm.library.Dictionary(master_component, config)
This constructor must not be used explicitly. The only correct way of creating a Dictionary is through
MasterComponent.CreateDictionary() method.

name()
Returns the string name of the dictionary.

Reconfigure(config)
Updates the configuration of the dictionary with new DictionaryConfig value, provided by config parame-
ter.

10.8.7 Visualizers

class artm.library.Visualizers
This class provides a set of static method to visualize some scores.

PrintTopTokensScore(top_tokens_score)

Prints the TopTokensScore.

PrintThetaSnippetScore(theta_snippet_score)

Prints the ThetaSnippetScore.

10.8.8 Exceptions

exception artm.library.InternalError
An exception class corresponding to ARTM_INTERNAL_ERROR error code.

86 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

exception artm.library.ArgumentOutOfRangeException
An exception class corresponding to ARTM_ARGUMENT_OUT_OF_RANGE error code.

exception artm.library.InvalidMasterIdException
An exception class corresponding to ARTM_INVALID_MASTER_ID error code.

exception artm.library.CorruptedMessageException
An exception class corresponding to ARTM_CORRUPTED_MESSAGE error code.

exception artm.library.InvalidOperationException
An exception class corresponding to ARTM_INVALID_OPERATION error code.

exception artm.library.DiskReadException
An exception class corresponding to ARTM_DISK_READ_ERROR error code.

exception artm.library.DiskWriteException
An exception class corresponding to ARTM_DISK_WRITE_ERROR error code.

10.8.9 Constants

artm.library.Stream_Type_Global

artm.library.Stream_Type_ItemIdModulus

artm.library.RegularizerConfig_Type_DirichletTheta

artm.library.RegularizerConfig_Type_DirichletPhi

artm.library.RegularizerConfig_Type_SmoothSparseTheta

artm.library.RegularizerConfig_Type_SmoothSparsePhi

artm.library.RegularizerConfig_Type_DecorrelatorPhi

artm.library.ScoreConfig_Type_Perplexity

artm.library.ScoreData_Type_Perplexity

artm.library.ScoreConfig_Type_SparsityTheta

artm.library.ScoreData_Type_SparsityTheta

artm.library.ScoreConfig_Type_SparsityPhi

artm.library.ScoreData_Type_SparsityPhi

artm.library.ScoreConfig_Type_ItemsProcessed

artm.library.ScoreData_Type_ItemsProcessed

artm.library.ScoreConfig_Type_TopTokens

artm.library.ScoreData_Type_TopTokens

artm.library.ScoreConfig_Type_ThetaSnippet

artm.library.ScoreData_Type_ThetaSnippet

artm.library.ScoreConfig_Type_TopicKernel

artm.library.ScoreData_Type_TopicKernel

artm.library.PerplexityScoreConfig_Type_UnigramDocumentModel

artm.library.PerplexityScoreConfig_Type_UnigramCollectionModel

artm.library.CollectionParserConfig_Format_BagOfWordsUci

10.8. Python Interface 87



BigARTM Documentation, Release 1.0

10.9 Plain C interface of BigARTM

This document explains all public methods of the low level BigARTM interface.

10.9.1 Introduction

The goal of low level BigARTM interface is to expose all functionality of the library in a set of simple functions written
in good old plain C language. This makes it easier to consume BigARTM from various programming environments.
For example, the Python Interface of BigARTM uses ctypes module to call the low level BigARTM interface. Most
programming environments also have similar functionality: PInvoke in C#, loadlibrary in Matlab, etc.

Note that most methods in this API accept a serialized binary representation of some Google Protocol Buffer message.
Please, refer to Messages for more details about each particular message.

All methods in this API return an integer value. Negative return values represent an error code. See error codes for
the list of all error codes. To get corresponding error message as string use ArtmGetLastErrorMessage().
Non-negative return values represent a success, and for some API methods might also incorporate some useful in-
formation. For example, ArtmCreateMasterComponent() returns the ID of newly created master compo-
nent, and ArtmRequestTopicModel() returns the length of the buffer that should be allocated before calling
ArtmCopyRequestResult().

10.9.2 ArtmCreateMasterComponent

int ArtmCreateMasterComponent(int length, const char* master_component_config)
Creates a master component.

Parameters

• master_component_config (const_char*) – Serialized MasterComponentConfig
message, describing the configuration of the master component.

• length (int) – The length in bytes of the master_component_config message.

Returns In case of success, a non-negative ID of the master component, otherwise one of the error
codes.

The ID, returned by this operation, is required by most methods in this API. Several master components may
coexist in the same process. In such case any two master components with different IDs can not share any
common data, and thus they are completely independent from each other.

10.9.3 ArtmReconfigureMasterComponent

int ArtmReconfigureMasterComponent(int master_id, int length, const char* mas-
ter_component_config)

Changes the configuration of the master component.

Parameters

• master_id (int) – The ID of a master component returned by
ArtmCreateMasterComponent() method.

• master_component_config (const_char*) – Serialized MasterComponentConfig
message, describing the new configuration of the master component.

• length (int) – The length in bytes of the master_component_config message.

Returns A zero value if operation succeeded, otherwise one of the error codes.

88 Chapter 10. Legacy documentation pages

https://docs.python.org/2/library/ctypes.html
http://msdn.microsoft.com/en-us/library/aa288468(v=vs.71).aspx
http://www.mathworks.se/help/matlab/matlab_external/calling-functions-in-shared-libraries.html


BigARTM Documentation, Release 1.0

10.9.4 ArtmDisposeMasterComponent

int ArtmDisposeMasterComponent(int master_id)
Disposes master component together with all its models, regularizers and dictionaries.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

Returns This operation always returns ARTM_SUCCESS.

This operation releases memory and other unmanaged resources, used by the master component.

After this operation the master_id value becames invalid and must not be used in other operations.

10.9.5 ArtmCreateModel

int ArtmCreateModel(int master_id, int length, const char* model_config)
Defines a new topic model.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• model_config (const_char*) – Serialized ModelConfig message, describing the
configuration of the topic model.

• length (int) – The length in bytes of the model_config message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

Note that this method only defines the configuration a topic model, but does not tune it. Use
ArtmInvokeIteration() method to process the collection of textual documents, and then
ArtmRequestTopicModel() to retrieve the resulting topic model.

It is important to notice that model_config must have a unique value in the ModelConfig.name field, that
can be further used to identify the model (for example in ArtmRequestTopicModel() call).

10.9.6 ArtmReconfigureModel

int ArtmReconfigureModel(int master_id, int length, const char* model_config)
Updates the configuration of topic model.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• model_config (const_char*) – Serialized ModelConfig message, describing the new
configuration of the topic model.

• length (int) – The length in bytes of the model_config message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9. Plain C interface of BigARTM 89



BigARTM Documentation, Release 1.0

10.9.7 ArtmDisposeModel

int ArtmDisposeModel(int master_id, const char* model_name)
Explicitly delete a specific topic model. All regularizers within specific master component are also deleted
automatically by ArtmDisposeMasterComponent().

After ArtmDisposeModel() the model_name became invalid and shell not be used in
ArtmRequestScore(), ArtmRequestTopicModel(), ArtmRequestThetaMatrix() or
any other method (or protobuf message) that require model_name.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• model_name (const_char*) – A string identified of the model that should be deleted.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.8 ArtmCreateRegularizer

int ArtmCreateRegularizer(int master_id, int length, const char* regularizer_config)
Creates a new regularizer.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• regularizer_config (const_char*) – Serialized RegularizerConfig message, de-
scribing the configuration of a new regularizer.

• length (int) – The length in bytes of the regularizer_config message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

This operation only creates the regularizer so that it can be used by topic models. To actually apply the regular-
izer you should include its name in ModelConfig.regularizer_name list of a model config.

10.9.9 ArtmReconfigureRegularizer

int ArtmReconfigureRegularizer(int master_id, int length, const char* regularizer_config)
Updates the configuration of the regularizer.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• regularizer_config (const_char*) – Serialized RegularizerConfig message, de-
scribing the configuration of a new regularizer.

• length (int) – The length in bytes of the regularizer_config message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

90 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

10.9.10 ArtmDisposeRegularizer

int ArtmDisposeRegularizer(int master_id, const char* regularizer_name)
Explicitly delete a specific regularizer. All regularizers within specific master component are also deleted auto-
matically by ArtmDisposeMasterComponent().

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• regularizer_name (const_char*) – A string identified of the regularizer that
should be deleted.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.11 ArtmCreateDictionary

int ArtmCreateDictionary(int master_id, int length, const char* dictionary_config)
Creates a new dictionary.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• dictionary_config (const_char*) – Serialized DictionaryConfig message, de-
scribing the configuration of a new dictionary.

• length (int) – The length in bytes of the dictionary_config message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.12 ArtmReconfigureDictionary

int ArtmReconfigureDictionary(int master_id, int length, const char* dictionary_config)
Updates the dictionary.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• dictionary_config (const_char*) – Serialized DictionaryConfig message, de-
scribing the new configuration of the dictionary.

• length (int) – The length in bytes of the dictionary_config message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.13 ArtmDisposeDictionary

int ArtmDisposeDictionary(int master_id, const char* dictionary_name)
Explicitly delete a specific dictionary. All dictionaries within specific master component are also deleted auto-
matically by ArtmDisposeMasterComponent().

10.9. Plain C interface of BigARTM 91



BigARTM Documentation, Release 1.0

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• dictionary_name (const_char*) – A string identified of the dictionary that should
be deleted.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.14 ArtmAddBatch

int ArtmAddBatch(int master_id, int length, const char* add_batch_args)
Adds batch for processing.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• add_batch_args (const_char*) – Serialized AddBatchArgs message, describing the
arguments of this operation.

• length (int) – The length in bytes of the add_batch_args message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.15 ArtmInvokeIteration

int ArtmInvokeIteration(int master_id, int length, const char* invoke_iteration_args)
Invokes several iterations over the collection.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• char* invoke_iteration_args (const) – Serialized InvokeIterationArgs mes-
sage, describing the arguments of this operation.

• length (int) – The length in bytes of the invoke_iteration_args message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.16 ArtmSynchronizeModel

int ArtmSynchronizeModel(int master_id, int length, const char* sync_model_args)
Synchronizes topic model.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• sync_model_args (const_char*) – Serialized SynchronizeModelArgs message, de-
scribing the arguments of this operation.

92 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

• length (int) – The length in bytes of the sync_model_args message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

This operation updates the Phi matrix of the topic model with all model increments, collected since last call to
ArtmSynchronizeModel. In addition, this operation invokes all Phi-regularizers for the requested topic model.

10.9.17 ArtmInitializeModel

int ArtmInitializeModel(int master_id, int length, const char* init_model_args)
Initializes the phi matrix of a topic model with some random initial approximation.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• init_model_args (const_char*) – Serialized InitializeModelArgs message, de-
scribing the arguments of this operation.

• length (int) – The length in bytes of the init_model_args message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.18 ArtmExportModel

int ArtmExportModel(int master_id, int length, const char* export_model_args)
Exports phi matrix into a file.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• export_model_args (const_char*) – Serialized ExportModelArgs message, de-
scribing the arguments of this operation.

• length (int) – The length in bytes of the export_model_args message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.19 ArtmImportModel

int ArtmImportModel(int master_id, int length, const char* import_model_args)
Import phi matrix from a file.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• import_model_args (const_char*) – Serialized ImportModelArgs message, de-
scribing the arguments of this operation.

• length (int) – The length in bytes of the import_model_args message.

10.9. Plain C interface of BigARTM 93



BigARTM Documentation, Release 1.0

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.20 ArtmWaitIdle

int ArtmWaitIdle(int master_id, int length, const char* wait_idle_args)
Awaits for ongoing iterations.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• wait_idle_args (const_char*) – Serialized WaitIdleArgs message, describing the
arguments of this operation.

• length (int) – The length in bytes of the wait_idle_args message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.21 ArtmOverwriteTopicModel

int ArtmOverwriteTopicModel(int master_id, int length, const char* topic_model)
This operation schedules an update of an entire topic model or of it subpart.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• topic_model (const_char*) – Serialized TopicModel message, describing the new
topic model.

• length (int) – The length in bytes of the topic_model message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

Note that this operation only schedules the update of a topic model. To make sure the update is com-
pleted you must call ArtmWaitIdle() and ArtmSynchronizeModel(). Remember that by default
ArtmSynchronizeModel() will calculate all regularizers enabled in the configuration of the topic model.
The may result in a different topic model than the one you passed as topic_model parameter. To avoid this
behavior set SynchronizeModelArgs.invoke_regularizers to false.

10.9.22 ArtmRequestThetaMatrix

int ArtmRequestThetaMatrix(int master_id, int length, const char* get_theta_args)
Requests theta matrix. Use ArtmCopyRequestResult() to copy the resulting message.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• get_theta_args (const_char*) – Serialized GetThetaMatrixArgs message, describ-
ing the arguments of this operation.

• length (int) – The length in bytes of the get_theta_args message.

94 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

Returns In case of success, returns the length in bytes of a buffer that should be allocated on callers
site and then passed to ArtmCopyRequestResult() method. This will populate the buffer
with ThetaMatrix message, carrying the requested information. In case of a failure, returns one
of the error codes.

10.9.23 ArtmRequestTopicModel

int ArtmRequestTopicModel(int master_id, int length, const char* get_model_args)
Requests topic model.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• get_model_args (const_char*) – Serialized GetTopicModelArgs message, describ-
ing the arguments of this operation.

• length (int) – The length in bytes of the get_model_args message.

Returns In case of success, returns the length in bytes of a buffer that should be allocated on callers
site and then passed to ArtmCopyRequestResult() method. This will populate the buffer
with TopicModel message, carrying the requested information. In case of a failure, returns one
of the error codes.

10.9.24 ArtmRequestRegularizerState

int ArtmRequestRegularizerState(int master_id, const char* regularizer_name)
Requests state of a specific regularizer.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• regularizer_name (const_char*) – A string identified of the regularizer.

Returns In case of success, returns the length in bytes of a buffer that should be allocated on callers
site and then passed to ArtmCopyRequestResult() method. This will populate the buffer
with RegularizerInternalState message, carrying the requested information. In case of a failure,
returns one of the error codes.

10.9.25 ArtmRequestScore

int ArtmRequestScore(int master_id, int length, const char* get_score_args)
Request the result of score calculation.

Parameters

• master_id (int) – The ID of a master component, returned by
ArtmCreateMasterComponent() method.

• const_char* – get_score_args: Serialized GetScoreValueArgs message, describing the
arguments of this operation.

• length (int) – The length in bytes of the get_score_args message.

10.9. Plain C interface of BigARTM 95



BigARTM Documentation, Release 1.0

Returns In case of success, returns the length in bytes of a buffer that should be allocated on callers
site and then passed to ArtmCopyRequestResult() method. This will populate the buffer
with ScoreData message, carrying the requested information. In case of a failure, returns one of
the error codes.

10.9.26 ArtmRequestParseCollection

int ArtmRequestParseCollection(int length, const char* collection_parser_config)
Parses a text collection into a set of batches and stores them on disk. Returns a DictionaryConfig message that
lists all tokens, occured in the collection.

Check the description of CollectionParserConfig message for more details about this operation.

Parameters

• const_char* – collection_parser_config: Serialized CollectionParserConfig message,
describing the configuration the collection parser.

• length (int) – The length in bytes of the collection_parser_config message.

Returns In case of success, returns the length in bytes of a buffer that should be allocated on callers
site and then passed to ArtmCopyRequestResult() method. The buffer will contain Dic-
tionaryConfig message, that lists all unique tokens from the collection being parsed. In case of
a failure, returns one of the error codes.

Warning: The following error most likelly indicate that you are trying to parse a very large file in 32 bit version
of BigARTM.
InternalError : failed mapping view: The parameter is incorrect
Try to use 64 bit BigARTM to workaround this issue.

10.9.27 ArtmRequestLoadDictionary

int ArtmRequestLoadDictionary(const char* filename)
Loads a DictionaryConfig message from disk.

Parameters

• const_char* – filename: A full file name of a file that contains a serialized Dictio-
naryConfig message.

Returns In case of success, returns the length in bytes of a buffer that should be allocated on callers
site and then passed to ArtmCopyRequestResult() method. The buffer will contain the
resulting DictionaryConfig message. In case of a failure, returns one of the error codes.

This method can be used to load CollectionParserConfig.dictionary_file_name or
CollectionParserConfig.cooccurrence_file_name dictionaries, saved by ArtmRequestParseC-
ollection method.

10.9.28 ArtmRequestLoadBatch

int ArtmRequestLoadBatch(const char* filename)
Loads a Batch message from disk.

Parameters

96 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

• const_char* – filename: A full file name of a file that contains a serialized Batch mes-
sage.

Returns In case of success, returns the length in bytes of a buffer that should be allocated on callers
site and then passed to ArtmCopyRequestResult() method. The buffer will contain the
resulting Batch message. In case of a failure, returns one of the error codes.

This method can be used to load batches saved by ArtmRequestParseCollection method or ArtmSaveBatch method.

10.9.29 ArtmCopyRequestResult

int ArtmCopyRequestResult(int length, char* address)
Copies the result of the last request.

Parameters

• const_char* – address: Target memory location to copy the data.

• length (int) – The length in bytes of the address buffer.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.30 ArtmSaveBatch

int ArtmSaveBatch(const char* disk_path, int length, const char* batch)
Saves a Batch message to disk.

Parameters

• const_char* – disk_path: A floder where to save the batch.

• batch (const_char*) – Serialized Batch message to save.

• length (int) – The length in bytes of the batch message.

Returns Returns ARTM_SUCCESS value if operation succeeded, otherwise returns one of the error
codes.

10.9.31 ArtmGetLastErrorMessage

const char* ArtmGetLastErrorMessage()
Retrieves the textual error message, occured during the last failing request.

10.9.32 Error codes

#define ARTM_SUCCESS 0
#define ARTM_STILL_WORKING -1
#define ARTM_INTERNAL_ERROR -2
#define ARTM_ARGUMENT_OUT_OF_RANGE -3
#define ARTM_INVALID_MASTER_ID -4
#define ARTM_CORRUPTED_MESSAGE -5
#define ARTM_INVALID_OPERATION -6
#define ARTM_DISK_READ_ERROR -7
#define ARTM_DISK_WRITE_ERROR -8

10.9. Plain C interface of BigARTM 97



BigARTM Documentation, Release 1.0

ARTM_SUCCESS
The API call succeeded.

ARTM_STILL_WORKING
This error code is applicable only to ArtmWaitIdle(). It indicates that library is still processing the collec-
tion. Try to retrieve results later.

ARTM_INTERNAL_ERROR
The API call failed due to internal error in BigARTM library. Please, collect steps to reproduce this issue and
report it with BigARTM issue tracker.

ARTM_ARGUMENT_OUT_OF_RANGE
The API call failed because one or more values of an argument are outside the allowable range of values as
defined by the invoked method.

ARTM_INVALID_MASTER_ID
An API call that require master_id parameter failed because MasterComponent with given ID does not exist.

ARTM_CORRUPTED_MESSAGE
Unable to deserialize protocol buffer message.

ARTM_INVALID_OPERATION
The API call is invalid in current state or due to provided parameters.

ARTM_DISK_READ_ERROR
The required files coult not be read from disk.

ARTM_DISK_WRITE_ERROR
The required files could not be writtent to disk.

10.10 C++ interface

BigARTM C++ interface is currently not documented. The main entry point is MasterModel class from
src/artm/cpp_interface.cc. Please referto src/bigartm//srcmain.cc for usage examples, and ask
questions at bigartm-users or open a new issue.

class MasterModel {
public:
explicit MasterModel(const MasterModelConfig& config);
~MasterModel();

int id() const { return id_; }
MasterComponentInfo info() const; // misc. diagnostics information

const MasterModelConfig& config() const { return config_; }
MasterModelConfig* mutable_config() { return &config_; }
void Reconfigure(); // apply MasterModel::config()

// Operations to work with dictionary through disk
void GatherDictionary(const GatherDictionaryArgs& args);
void FilterDictionary(const FilterDictionaryArgs& args);
void ImportDictionary(const ImportDictionaryArgs& args);
void ExportDictionary(const ExportDictionaryArgs& args);
void DisposeDictionary(const std::string& dictionary_name);

// Operations to work with dictinoary through memory
void CreateDictionary(const DictionaryData& args);
DictionaryData GetDictionary(const GetDictionaryArgs& args);

98 Chapter 10. Legacy documentation pages

https://groups.google.com/group/bigartm-users
https://github.com/bigartm/bigartm/issues


BigARTM Documentation, Release 1.0

// Operatinos to work with batches through memory
void ImportBatches(const ImportBatchesArgs& args);
void DisposeBatch(const std::string& batch_name);

// Operations to work with model
void InitializeModel(const InitializeModelArgs& args);
void ImportModel(const ImportModelArgs& args);
void ExportModel(const ExportModelArgs& args);
void FitOnlineModel(const FitOnlineMasterModelArgs& args);
void FitOfflineModel(const FitOfflineMasterModelArgs& args);

// Apply model to batches
ThetaMatrix Transform(const TransformMasterModelArgs& args);
ThetaMatrix Transform(const TransformMasterModelArgs& args, Matrix* matrix);

// Retrieve operations
TopicModel GetTopicModel(const GetTopicModelArgs& args);
TopicModel GetTopicModel(const GetTopicModelArgs& args, Matrix* matrix);
ThetaMatrix GetThetaMatrix(const GetThetaMatrixArgs& args);
ThetaMatrix GetThetaMatrix(const GetThetaMatrixArgs& args, Matrix* matrix);

// Retrieve scores
ScoreData GetScore(const GetScoreValueArgs& args);
template <typename T>
T GetScoreAs(const GetScoreValueArgs& args);

Warning: What follows below in this page is really outdated.

In addition to this page consider to look at Plain C interface of BigARTM, Python Interface or Messages. These
documentation files are also to certain degree relevant for C++ interface, because C++ interface is quite similar to
Python interface and share the same Protobuf messages.

10.10.1 MasterComponent

class MasterComponent

MasterComponent(const MasterComponentConfig &config)
Creates a master component with configuration defined by MasterComponentConfig message.

void Reconfigure(const MasterComponentConfig &config)
Updates the configuration of the master component.

const MasterComponentConfig &config() const
Returns current configuration of the master component.

MasterComponentConfig *mutable_config()
Returns mutable configuration of the master component. Remember to call Reconfigure() to propa-
gate your changes to master component.

void InvokeIteration(int iterations_count = 1)
Invokes certain number of iterations.

bool AddBatch(const Batch &batch, bool reset_scores)
Adds batch to the processing queue.

10.10. C++ interface 99



BigARTM Documentation, Release 1.0

bool WaitIdle(int timeout = -1)
Waits for iterations to be completed. Returns true if BigARTM completed before the specific timeout,
otherwise false.

std::shared_ptr<TopicModel> GetTopicModel(const std::string &model_name)
Retrieves Phi matrix of a specific topic model. The resulting message TopicModel will contain information
about token weights distribution across topics.

std::shared_ptr<TopicModel> GetTopicModel(const GetTopicModelArgs &args)
Retrieves Phi matrix based on extended parameters, specified in GetTopicModelArgs message. The result-
ing message TopicModel will contain information about token weights distribution across topics.

std::shared_ptr<ThetaMatrix> GetThetaMatrix(const std::string &model_name)
Retrieves Theta matrix of a specific topic model. The resulting message ThetaMa-
trix will contain information about items distribution across topics. Remember to set
MasterComponentConfig.cache_theta prior to the last iteration in order to gather Theta
matrix.

std::shared_ptr<ThetaMatrix> GetThetaMatrix(const GetThetaMatrixArgs &args)
Retrieves Theta matrix based on extended parameters, specified in GetThetaMatrixArgs message. The
resulting message ThetaMatrix will contain information about items distribution across topics.

std::shared_ptr<T> GetScoreAs<T>(const Model &model, const std::string &score_name)
Retrieves given score for a specific model. Template argument must match the specific ScoreData type of
the score (for example, PerplexityScore).

10.10.2 Model

class Model

Model(const MasterComponent &master_component, const ModelConfig &config)
Creates a topic model defined by ModelConfig inside given MasterComponent.

void Reconfigure(const ModelConfig &config)
Updates the configuration of the model.

const std::string &name() const
Returns the name of the model.

const ModelConfig &config() const
Returns current configuration of the model.

ModelConfig *mutable_config()
Returns mutable configuration of the model. Remember to call Reconfigure() to propagate your
changes to the model.

void Overwrite(const TopicModel &topic_model, bool commit = true)
Updates the model with new Phi matrix, defined by topic_model. This operation can be used to provide an
explicit initial approximation of the topic model, or to adjust the model in between iterations.

Depending on the commit flag the change can be applied immediately (commit = true) or queued (commit
= false). The default setting is to use commit = true. You may want to use commit = false if your model is
too big to be updated in a single protobuf message. In this case you should split your model into parts, each
part containing subset of all tokens, and then submit each part in separate Overwrite operation with commit
= false. After that remember to call MasterComponent::WaitIdle() and Synchronize() to
propagate your change.

100 Chapter 10. Legacy documentation pages



BigARTM Documentation, Release 1.0

void Initialize(const Dictionary &dictionary)
Initialize topic model based on the Dictionary . Each token from the dictionary will be included in the
model with randomly generated weight.

void Export(const string &file_name)
Exports topic model into a file.

void Import(const string &file_name)
Imports topic model from a file.

void Synchronize(double decay_weight, double apply_weight, bool invoke_regularizers)
Synchronize the model.

This operation updates the Phi matrix of the topic model with all model increments, collected since the
last call to Synchronize() method. The weights in the Phi matrix are set according to decay_weight
and apply_weight values (refer to SynchronizeModelArgs.decay_weight for more details). De-
pending on invoke_regularizers parameter this operation may also invoke all regularizers.

Remember to call Model::Synchronize() operation every time after calling
MasterComponent::WaitIdle().

void Synchronize(const SynchronizeModelArgs &args)
Synchronize the model based on extended arguments SynchronizeModelArgs.

10.10.3 Regularizer

class Regularizer

Regularizer(const MasterComponent &master_component, const RegularizerConfig &config)
Creates a regularizer defined by RegularizerConfig inside given MasterComponent.

void Reconfigure(const RegularizerConfig &config)
Updates the configuration of the regularizer.

const RegularizerConfig &config() const
Returns current configuration of the regularizer.

RegularizerConfig *mutable_config()
Returns mutable configuration of the regularizer. Remember to call Reconfigure() to propagate your
changes to the regularizer.

10.10.4 Dictionary

class Dictionary

Dictionary(const MasterComponent &master_component, const DictionaryConfig &config)
Creates a dictionary defined by DictionaryConfig inside given MasterComponent.

void Reconfigure(const DictionaryConfig &config)
Updates the configuration of the dictionary.

const std::string name() const
Returns the name of the dictionary.

const DictionaryConfig &config() const
Returns current configuration of the dictionary.

10.10. C++ interface 101



BigARTM Documentation, Release 1.0

10.10.5 Utility methods

void SaveBatch(const Batch &batch, const std::string &disk_path)
Saves Batch into a specific folder. The name of the resulting file will be autogenerated, and the extention set to
.batch

std::shared_ptr<DictionaryConfig> LoadDictionary(const std::string &filename)
Loads the DictionaryConfig message from a specific file on disk. filename must represent full disk path to the
dictionary file.

std::shared_ptr<Batch> LoadBatch(const std::string &filename)
Loads the Batch message from a specific file on disk. filename must represent full disk path to the batch file,
including .batch extention.

std::shared_ptr<DictionaryConfig> ParseCollection(const CollectionParserConfig &config)
Parses a text collection as defined by CollectionParserConfig message. Returns an instance of DictionaryConfig
which carry all unique words in the collection and their frequencies.

10.11 Windows distribution

This chapter describes content of BigARTM distribution package for Windows, available at
https://github.com/bigartm/bigartm/releases.

102 Chapter 10. Legacy documentation pages

https://github.com/bigartm/bigartm/releases


BigARTM Documentation, Release 1.0

bin/

Precompiled binaries of BigARTM for Windows.
This folder must be added to PATH system variable.

bin/artm.dll

Core functionality of the BigARTM library.

bin/cpp_client.exe

Command line utility allows to perform simple
experiments
with BigARTM. Remember that not all BigARTM
features are
available through cpp_client, but it can serve as a good
starting point to learn basic functionality. For further
details refer to /ref/cpp_client.

protobuf/

A minimalistic version of Google Protocol Buffers
(https://code.google.com/p/protobuf/)
library, required to run BigARTM from Python.
To setup this package follow the instructions in
protobuf/python/README file.

python/artm/

Python programming interface to BigARTM library.
This folder must be added to PYTHONPATH
system variable.

library.py

Implements all classes of BigARTM python interface.

messages_pb2.py

Contains all protobuf messages that can be transfered in
and out BigARTM core library. Most common features
are
exposed with their own API methods, so normally you
do not use python protobuf messages to operate
BigARTM.

python/examples/

Python examples of how to use BigARTM:

Files docword.kos.txt and vocab.kos.txt
represent
a simple collection of text files in Bag-Of-Words
format.
The files are taken from UCI Machine Learning
Repository

(https://archive.ics.uci.edu/ml/datasets/Bag+of+Words).

src/

Several programming interfaces to BigARTM library.

src/c_interface.h

Low-level BigARTM interface in C.

cpp_interface.h,cc

C++ interface of BigARTM

messages.pb.h,cc

Protobuf messages for C++ interface

messages.proto

Protobuf description for all messages that appear in the
API of BigARTM. Documented here.

LICENSE License file of BigARTM.

10.11. Windows distribution 103

https://code.google.com/p/protobuf/
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words


BigARTM Documentation, Release 1.0

104 Chapter 10. Legacy documentation pages



CHAPTER 11

Indices and tables

• genindex

• modindex

• search

105



BigARTM Documentation, Release 1.0

106 Chapter 11. Indices and tables



Python Module Index

a
artm.library, 81

107



BigARTM Documentation, Release 1.0

108 Python Module Index



Index

A
AddBatch() (artm.library.MasterComponent method), 83
alpha_iter (SmoothSparseThetaConfig attribute), 59
apply_weight (SynchronizeModelArgs attribute), 76
ArgumentOutOfRangeException, 86
artm.library (module), 81
artm::Dictionary (C++ class), 101
artm::Dictionary::config (C++ function), 101
artm::Dictionary::Dictionary (C++ function), 101
artm::Dictionary::name (C++ function), 101
artm::Dictionary::Reconfigure (C++ function), 101
artm::LoadBatch (C++ function), 102
artm::LoadDictionary (C++ function), 102
artm::MasterComponent (C++ class), 99
artm::MasterComponent::AddBatch (C++ function), 99
artm::MasterComponent::config (C++ function), 99
artm::MasterComponent::GetScoreAs<T> (C++ func-

tion), 100
artm::MasterComponent::GetThetaMatrix (C++ func-

tion), 100
artm::MasterComponent::GetTopicModel (C++ func-

tion), 100
artm::MasterComponent::InvokeIteration (C++ function),

99
artm::MasterComponent::MasterComponent (C++ func-

tion), 99
artm::MasterComponent::mutable_config (C++ func-

tion), 99
artm::MasterComponent::Reconfigure (C++ function), 99
artm::MasterComponent::WaitIdle (C++ function), 99
artm::Model (C++ class), 100
artm::Model::config (C++ function), 100
artm::Model::Export (C++ function), 101
artm::Model::Import (C++ function), 101
artm::Model::Initialize (C++ function), 100
artm::Model::Model (C++ function), 100
artm::Model::mutable_config (C++ function), 100
artm::Model::name (C++ function), 100
artm::Model::Overwrite (C++ function), 100
artm::Model::Reconfigure (C++ function), 100

artm::Model::Synchronize (C++ function), 101
artm::ParseCollection (C++ function), 102
artm::Regularizer (C++ class), 101
artm::Regularizer::config (C++ function), 101
artm::Regularizer::mutable_config (C++ function), 101
artm::Regularizer::Reconfigure (C++ function), 101
artm::Regularizer::Regularizer (C++ function), 101
artm::SaveBatch (C++ function), 102
ARTM_ARGUMENT_OUT_OF_RANGE (C macro), 98
ARTM_CORRUPTED_MESSAGE (C macro), 98
ARTM_DISK_READ_ERROR (C macro), 98
ARTM_DISK_WRITE_ERROR (C macro), 98
ARTM_INTERNAL_ERROR (C macro), 98
ARTM_INVALID_MASTER_ID (C macro), 98
ARTM_INVALID_OPERATION (C macro), 98
ARTM_STILL_WORKING (C macro), 98
ARTM_SUCCESS (C macro), 97
ArtmAddBatch (C function), 92
ArtmCopyRequestResult (C function), 97
ArtmCreateDictionary (C function), 91
ArtmCreateMasterComponent (C function), 88
ArtmCreateModel (C function), 89
ArtmCreateRegularizer (C function), 90
ArtmDisposeDictionary (C function), 91
ArtmDisposeMasterComponent (C function), 89
ArtmDisposeModel (C function), 90
ArtmDisposeRegularizer (C function), 91
ArtmExportModel (C function), 93
ArtmGetLastErrorMessage (C function), 97
ArtmImportModel (C function), 93
ArtmInitializeModel (C function), 93
ArtmInvokeIteration (C function), 92
ArtmOverwriteTopicModel (C function), 94
ArtmReconfigureDictionary (C function), 91
ArtmReconfigureMasterComponent (C function), 88
ArtmReconfigureModel (C function), 89
ArtmReconfigureRegularizer (C function), 90
ArtmRequestLoadBatch (C function), 96
ArtmRequestLoadDictionary (C function), 96
ArtmRequestParseCollection (C function), 96
ArtmRequestRegularizerState (C function), 95

109



BigARTM Documentation, Release 1.0

ArtmRequestScore (C function), 95
ArtmRequestThetaMatrix (C function), 94
ArtmRequestTopicModel (C function), 95
ArtmSaveBatch (C function), 97
ArtmSynchronizeModel (C function), 92
ArtmWaitIdle (C function), 94
average_kernel_contrast (TopicKernelScore attribute), 70
average_kernel_purity (TopicKernelScore attribute), 70
average_kernel_size (TopicKernelScore attribute), 70

B
batch (AddBatchArgs attribute), 79
batch (GetScoreValueArgs attribute), 79
batch (GetThetaMatrixArgs attribute), 78
batch_file_name (AddBatchArgs attribute), 79

C
cache_theta (MasterComponentConfig attribute), 56
class_id (Batch attribute), 55
class_id (DecorrelatorPhiConfig attribute), 60
class_id (DictionaryEntry attribute), 62
class_id (GetTopicModelArgs attribute), 77
class_id (LabelRegularizationPhiConfig attribute), 61
class_id (ModelConfig attribute), 58
class_id (SmoothSparsePhiConfig attribute), 60
class_id (SparsityPhiScoreConfig attribute), 66
class_id (TopicKernelScoreConfig attribute), 69
class_id (TopicModel attribute), 71
class_id (TopTokensScoreConfig attribute), 67
class_weight (ModelConfig attribute), 58
clean_cache (GetThetaMatrixArgs attribute), 78
CollectionParserConfig_Format_BagOfWordsUci (in

module artm.library), 87
compact_batches (MasterComponentConfig attribute), 56
config (RegularizerConfig attribute), 59
config (ScoreConfig attribute), 63
config() (artm.library.MasterComponent method), 82
config() (artm.library.Model method), 84
cooccurrence_file_name (CollectionParserConfig at-

tribute), 75
cooccurrence_token (CollectionParserConfig attribute),

75
CorruptedMessageException, 87
CreateDecorrelatorPhiRegularizer()

(artm.library.MasterComponent method),
82

CreateDictionary() (artm.library.MasterComponent
method), 83

CreateItemsProcessedScore()
(artm.library.MasterComponent method),
83

CreateMasterComponent() (artm.library.Library method),
81

CreatePerplexityScore() (artm.library.MasterComponent
method), 82

CreateRegularizer() (artm.library.MasterComponent
method), 82

CreateScore() (artm.library.MasterComponent method),
82

CreateSmoothSparsePhiRegularizer()
(artm.library.MasterComponent method),
82

CreateSmoothSparseThetaRegularizer()
(artm.library.MasterComponent method),
82

CreateSparsityPhiScore()
(artm.library.MasterComponent method),
83

CreateSparsityThetaScore()
(artm.library.MasterComponent method),
82

CreateStream() (artm.library.MasterComponent method),
84

CreateThetaSnippetScore()
(artm.library.MasterComponent method),
83

CreateTopicKernelScore()
(artm.library.MasterComponent method),
83

CreateTopTokensScore() (artm.library.MasterComponent
method), 83

D
data (ScoreData attribute), 63
decay_weight (SynchronizeModelArgs attribute), 76
description (Batch attribute), 55
Dictionary (class in artm.library), 86
dictionary_file_name (CollectionParserConfig attribute),

75
dictionary_name (InitializeModelArgs attribute), 77
dictionary_name (LabelRegularizationPhiConfig at-

tribute), 61
dictionary_name (SmoothSparsePhiConfig attribute), 60
Disable() (artm.library.Model method), 85
disk_cache_path (MasterComponentConfig attribute), 57
disk_path (InvokeIterationArgs attribute), 80
disk_path (MasterComponentConfig attribute), 56
DiskReadException, 87
DiskWriteException, 87
Dispose() (artm.library.MasterComponent method), 82
docword_file_path (CollectionParserConfig attribute), 74

E
Enable() (artm.library.Model method), 85
enabled (ModelConfig attribute), 58
EnableRegularizer() (artm.library.Model method), 85
EnableScore() (artm.library.Model method), 85

110 Index



BigARTM Documentation, Release 1.0

entry (DictionaryConfig attribute), 61
eps (GetThetaMatrixArgs attribute), 79
eps (GetTopicModelArgs attribute), 78
eps (SparsityPhiScoreConfig attribute), 66
eps (SparsityThetaScoreConfig attribute), 65
eps (TopicKernelScoreConfig attribute), 69
Export() (artm.library.Model method), 85

F
field (Item attribute), 54
field_name (ItemsProcessedScoreConfig attribute), 66
field_name (ModelConfig attribute), 58
field_name (PerplexityScoreConfig attribute), 64
field_name (SparsityThetaScoreConfig attribute), 65
field_name (ThetaSnippetScoreConfig attribute), 68
file_name (ExportModelArgs attribute), 80
file_name (ImportModelArgs attribute), 80
format (CollectionParserConfig attribute), 73

G
GetRegularizerState() (artm.library.MasterComponent

method), 84
GetThetaMatrix() (artm.library.MasterComponent

method), 84
GetTopicModel() (artm.library.MasterComponent

method), 84
GetValue() (artm.library.Score method), 86

I
id (Batch attribute), 55
id (Item attribute), 54
Import() (artm.library.Model method), 85
Initialize() (artm.library.Model method), 85
inner_iterations_count (ModelConfig attribute), 58
InternalError, 86
internals (TopicModel attribute), 71
InvalidMasterIdException, 87
InvalidOperationException, 87
invoke_regularizers (SynchronizeModelArgs attribute),

76
InvokeIteration() (artm.library.MasterComponent

method), 83
item (Batch attribute), 55
item_count (ThetaSnippetScoreConfig attribute), 68
item_id (ThetaMatrix attribute), 72
item_id (ThetaSnippetScore attribute), 69
item_id (ThetaSnippetScoreConfig attribute), 68
item_title (ThetaMatrix attribute), 72
item_weights (ThetaMatrix attribute), 72
items_count (DictionaryEntry attribute), 62
iterations_count (InvokeIterationArgs attribute), 80

K
kernel_contrast (TopicKernelScore attribute), 70

kernel_purity (TopicKernelScore attribute), 70
kernel_size (TopicKernelScore attribute), 70
key_token (DictionaryEntry attribute), 62

L
Library (class in artm.library), 81
LoadBatch() (artm.library.Library method), 81
LoadDictionary() (artm.library.Library method), 81

M
MasterComponent (class in artm.library), 81
merger_queue_max_size (MasterComponentConfig at-

tribute), 57
messages_pb2.Batch (built-in class), 54
messages_pb2.BoolArray (built-in class), 53
messages_pb2.CollectionParserConfig (built-in class), 73
messages_pb2.DecorrelatorPhiConfig (built-in class), 60
messages_pb2.DictionaryConfig (built-in class), 61
messages_pb2.DictionaryEntry (built-in class), 62
messages_pb2.DoubleArray (built-in class), 53
messages_pb2.Field (built-in class), 54
messages_pb2.FloatArray (built-in class), 53
messages_pb2.InitializeModelArgs (built-in class), 76
messages_pb2.IntArray (built-in class), 53
messages_pb2.Item (built-in class), 54
messages_pb2.ItemsProcessedScore (built-in class), 67
messages_pb2.ItemsProcessedScoreConfig (built-in

class), 66
messages_pb2.LabelRegularizationPhiConfig (built-in

class), 60
messages_pb2.MasterComponentConfig (built-in class),

56
messages_pb2.ModelConfig (built-in class), 57
messages_pb2.PerplexityScore (built-in class), 64
messages_pb2.PerplexityScoreConfig (built-in class), 64
messages_pb2.RegularizerConfig (built-in class), 59
messages_pb2.RegularizerInternalState (built-in class),

61
messages_pb2.ScoreConfig (built-in class), 62
messages_pb2.ScoreData (built-in class), 63
messages_pb2.SmoothSparsePhiConfig (built-in class),

60
messages_pb2.SmoothSparseThetaConfig (built-in class),

59
messages_pb2.SparsityPhiScore (built-in class), 66
messages_pb2.SparsityPhiScoreConfig (built-in class),

65
messages_pb2.SparsityThetaScoreConfig (built-in class),

65
messages_pb2.Stream (built-in class), 55
messages_pb2.SynchronizeModelArgs (built-in class), 76
messages_pb2.ThetaMatrix (built-in class), 72
messages_pb2.ThetaSnippetScore (built-in class), 68

Index 111



BigARTM Documentation, Release 1.0

messages_pb2.ThetaSnippetScoreConfig (built-in class),
68

messages_pb2.TopicKernelScore (built-in class), 69
messages_pb2.TopicKernelScoreConfig (built-in class),

69
messages_pb2.TopicModel (built-in class), 70
messages_pb2.TopTokensScore (built-in class), 67
messages_pb2.TopTokensScoreConfig (built-in class), 67
Model (class in artm.library), 84
model_name (ExportModelArgs attribute), 80
model_name (GetScoreValueArgs attribute), 79
model_name (GetThetaMatrixArgs attribute), 78
model_name (GetTopicModelArgs attribute), 77
model_name (ImportModelArgs attribute), 81
model_name (InitializeModelArgs attribute), 77
model_name (SynchronizeModelArgs attribute), 76
model_name (ThetaMatrix attribute), 72

N
name (DictionaryConfig attribute), 61
name (ModelConfig attribute), 57
name (RegularizerConfig attribute), 59
name (ScoreConfig attribute), 62
name (ScoreData attribute), 63
name (Stream attribute), 56
name (TopicModel attribute), 71
name() (artm.library.Dictionary method), 86
name() (artm.library.Model method), 84
name() (artm.library.Regularizer method), 86
name() (artm.library.Score method), 86
normalizer (PerplexityScore attribute), 64
num_entries (TopTokensScore attribute), 68
num_items_per_batch (CollectionParserConfig attribute),

75
num_tokens (TopTokensScoreConfig attribute), 67

O
online_batch_processing (MasterComponentConfig at-

tribute), 57
operation_type (TopicModel attribute), 71
opt_for_avx (ModelConfig attribute), 58
Overwrite() (artm.library.Model method), 85

P
ParseCollection() (artm.library.Library method), 81
ParseCollectionOrLoadDictionary() (artm.library.Library

method), 81
PerplexityScoreConfig_Type_UnigramCollectionModel

(in module artm.library), 87
PerplexityScoreConfig_Type_UnigramDocumentModel

(in module artm.library), 87
PrintThetaSnippetScore() (artm.library.Visualizers

method), 86

PrintTopTokensScore() (artm.library.Visualizers method),
86

probability_mass_threshold (TopicKernelScoreConfig at-
tribute), 69

processor_queue_max_size (MasterComponentConfig at-
tribute), 56

processors_count (MasterComponentConfig attribute), 56

R
raw (PerplexityScore attribute), 64
Reconfigure() (artm.library.Dictionary method), 86
Reconfigure() (artm.library.MasterComponent method),

83
Reconfigure() (artm.library.Model method), 84
Reconfigure() (artm.library.Regularizer method), 86
Regularizer (class in artm.library), 85
regularizer_name (ModelConfig attribute), 58
regularizer_tau (ModelConfig attribute), 58
RegularizerConfig_Type_DecorrelatorPhi (in module

artm.library), 87
RegularizerConfig_Type_DirichletPhi (in module

artm.library), 87
RegularizerConfig_Type_DirichletTheta (in module

artm.library), 87
RegularizerConfig_Type_SmoothSparsePhi (in module

artm.library), 87
RegularizerConfig_Type_SmoothSparseTheta (in module

artm.library), 87
RemoveDictionary() (artm.library.MasterComponent

method), 83
RemoveModel() (artm.library.MasterComponent

method), 82
RemoveRegularizer() (artm.library.MasterComponent

method), 82
RemoveScore() (artm.library.MasterComponent method),

83
RemoveStream() (artm.library.MasterComponent

method), 84
request_type (GetTopicModelArgs attribute), 78
reset_scores (AddBatchArgs attribute), 79
reset_scores (InvokeIterationArgs attribute), 80
reuse_theta (ModelConfig attribute), 58

S
SaveBatch() (artm.library.Library method), 81
Score (class in artm.library), 86
score_config (MasterComponentConfig attribute), 57
score_name (GetScoreValueArgs attribute), 79
score_name (ModelConfig attribute), 58
ScoreConfig_Type_ItemsProcessed (in module

artm.library), 87
ScoreConfig_Type_Perplexity (in module artm.library),

87

112 Index



BigARTM Documentation, Release 1.0

ScoreConfig_Type_SparsityPhi (in module artm.library),
87

ScoreConfig_Type_SparsityTheta (in module
artm.library), 87

ScoreConfig_Type_ThetaSnippet (in module
artm.library), 87

ScoreConfig_Type_TopicKernel (in module artm.library),
87

ScoreConfig_Type_TopTokens (in module artm.library),
87

ScoreData_Type_ItemsProcessed (in module
artm.library), 87

ScoreData_Type_Perplexity (in module artm.library), 87
ScoreData_Type_SparsityPhi (in module artm.library), 87
ScoreData_Type_SparsityTheta (in module artm.library),

87
ScoreData_Type_ThetaSnippet (in module artm.library),

87
ScoreData_Type_TopicKernel (in module artm.library),

87
ScoreData_Type_TopTokens (in module artm.library), 87
stream (MasterComponentConfig attribute), 56
stream_name (ItemsProcessedScoreConfig attribute), 66
stream_name (ModelConfig attribute), 58
stream_name (PerplexityScoreConfig attribute), 64
stream_name (SparsityThetaScoreConfig attribute), 65
stream_name (ThetaSnippetScoreConfig attribute), 68
Stream_Type_Global (in module artm.library), 87
Stream_Type_ItemIdModulus (in module artm.library),

87
Synchronize() (artm.library.Model method), 85

T
target_folder (CollectionParserConfig attribute), 75
theta_sparsity_value (PerplexityScore attribute), 64
timeout_milliseconds (AddBatchArgs attribute), 79
timeout_milliseconds (WaitIdleArgs attribute), 80
title (Item attribute), 54
token (Batch attribute), 55
token (GetTopicModelArgs attribute), 77
token (TopicModel attribute), 71
token (TopTokensScore attribute), 68
token_count (DictionaryEntry attribute), 62
token_weights (TopicModel attribute), 71
topic_index (GetThetaMatrixArgs attribute), 78
topic_index (ThetaMatrix attribute), 73
topic_index (TopicModel attribute), 71
topic_index (TopTokensScore attribute), 68
topic_name (DecorrelatorPhiConfig attribute), 60
topic_name (GetThetaMatrixArgs attribute), 78
topic_name (GetTopicModelArgs attribute), 77
topic_name (LabelRegularizationPhiConfig attribute), 61
topic_name (ModelConfig attribute), 57
topic_name (SmoothSparsePhiConfig attribute), 60

topic_name (SmoothSparseThetaConfig attribute), 59
topic_name (SparsityPhiScoreConfig attribute), 66
topic_name (SparsityThetaScoreConfig attribute), 65
topic_name (ThetaMatrix attribute), 72
topic_name (TopicKernelScoreConfig attribute), 69
topic_name (TopicModel attribute), 71
topic_name (TopTokensScore attribute), 68
topic_name (TopTokensScoreConfig attribute), 67
topics_count (ModelConfig attribute), 57
topics_count (ThetaMatrix attribute), 72
topics_count (TopicModel attribute), 71
topics_count() (artm.library.Model method), 84
total_items_count (DictionaryConfig attribute), 61
total_token_count (DictionaryConfig attribute), 61
total_tokens (SparsityPhiScore attribute), 66
total_topics (SparsityThetaScore attribute), 65
type (RegularizerConfig attribute), 59
type (ScoreConfig attribute), 63
type (ScoreData attribute), 63
type (Stream attribute), 55

U
use_new_tokens (ModelConfig attribute), 58
use_random_theta (ModelConfig attribute), 58
use_sparse_bow (ModelConfig attribute), 58
use_sparse_format (GetThetaMatrixArgs attribute), 79
use_sparse_format (GetTopicModelArgs attribute), 77
use_unity_based_indices (CollectionParserConfig at-

tribute), 75

V
value (DictionaryEntry attribute), 62
value (ItemsProcessedScore attribute), 67
value (PerplexityScore attribute), 64
value (SparsityPhiScore attribute), 66
value (SparsityThetaScore attribute), 65
values (ThetaSnippetScore attribute), 69
Visualizers (class in artm.library), 86
vocab_file_path (CollectionParserConfig attribute), 75

W
WaitIdle() (artm.library.MasterComponent method), 83
weight (TopTokensScore attribute), 68

Z
zero_tokens (SparsityPhiScore attribute), 66
zero_topics (SparsityThetaScore attribute), 65
zero_words (PerplexityScore attribute), 64

Index 113


	Introduction
	Downloads
	Formats
	Installation
	Installation for Windows users
	Installation for Linux and Mac OS-X users

	Tutorials
	BigARTM command line utility
	Running BigARTM from Python API

	BigARTM FAQ
	Can I use BigARTM from other programming languages (not Python)?
	How to retrieve Theta matrix from BigARTM

	BigARTM Developer's Guide
	Downloads (Windows)
	Source code
	Build C++ code on Windows
	Python code on Windows
	Build C++ code on Linux
	Working with iPython notebooks remotely
	Compiling .proto files on Windows
	Code style

	Release Notes
	BigARTM v0.7.0 Release notes
	BigARTM v0.7.1 Release notes
	BigARTM v0.7.2 Release notes
	BigARTM v0.7.3 Release notes
	BigARTM v0.7.4 Release notes

	Publications
	Legacy documentation pages
	Typical python example
	Basic BigARTM tutorial for Linux and Mac OS-X users
	Basic BigARTM tutorial for Windows users
	Enabling Basic BigARTM Regularizers
	BigARTM as a Service
	BigARTM: The Algorithm Under The Hood
	Messages
	Python Interface
	Plain C interface of BigARTM
	C++ interface
	Windows distribution

	Indices and tables
	Python Module Index

